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The CASPER (Computational Aerodynamics System for Performance Evaluation and Research) was developed at TRDI-JDA (Technical
Research & Development Ingtitute of Japan Defense Agency) in 1998. In this paper, the CFD code validation was discussed through the
three-dimensional RANS (Reynolds-Averaged Navier-Stokes) computations on the F-16A aircraft configuration in transonic (freestream
Mach number M, =0.9) and supersonic (M,, =1.2) speed regions. As the modeling of air intake and exhaust nozzle, fairing and flow-through
configurations are computed using Spalart-Allmaras one-equation turbulence model on the hybrid unstructured grids, which is composed of
semi-structured grid, prism, pyramid, tent and tetrahedrons. For comparison, Baldwin-Lomax agebraic and Johnson-King one-eguation
turbulence models are applied to only the fairing configuration for the structured grids. With respect to force and moment coefficients and
wing surface pressure distribution, the present computed results are well quantitatively compared to experiments, inviscid and structured
viscous computed results. Also, using Spalart-Allmaras one-equation model on the hybrid unstructured grids, the powered configuration
including inlet airflow and jet exhaust effects is computed in the subsonic region (M., =0.6). In order to verify the sidedlip characterigtic, the
present computed results are well compared to experiments on the total pressure recovery ratio on the engine compressor face at steady state.
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Above-front view

Symmetry-plane view

a Fairing configuration 894,704 nodes and 2,435,586 elements
Layer region 14,308 tetrahedrons, 1,405,642 prisms, 13,166 pyramids and 2,164 tents, Non-Layer region 1,000,306 tetrahedrons

Above-front view

Symmetry-plane view

b Flow-through configuration 830,124 nodes and 2,355,002 elements
Layer region 16,848 tetrahedrons, 1,242,344 prisms, 15,684 pyramids and 2,732 tents, Non-Layer region 1,077,394 tetrahedrons

Fig.1 Close-up viewsof hybrid unstructured grids on the full model of the F-16A aircraft fairing and flow-through configuration.

Above-front view

Front view

Fig.2 Close-up viewsof hybrid unstructured grids on the full model of the F-16A aircraft power configuration
881,579 nodes and 2,400,128 elements Layer region 14,958 tetrahedrons, 1,380,642 prisms, 14,198 pyramids and 2,728 tents, Non-

Layer region 987,602 tetrahedrons
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Block 2

Far-field view

Close-up view around the airframe

Fig.3 Structured grids on the half model of the F-16A aircraft fairing configuration
Block 1 159x 261x 51=2,116,449 Block2 159x 39x 51=316,251 Sumtotal 2,432,700 grid points
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Fig.4 Body surface pressure distributions for the F-16A aircraft flow-through configuration
a M, =09, a =4.0° , =0.0,5.0° and Re=12.75x 10°.
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Pressure Coefficient Cp

Above-front view of body surface pressure distribution

| ee——

Cp

Close-up view of pressure distribution around air intake

Fig.5 Viscous computed pressure distributions for the F-16A aircraft flow-through configuration
aM,=1.2, a =6.0° ,8 =0.0° and Re=12.75x 10°.
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Fig.6 Comparison of computed and experimental wing surface pressure coefficient distributions at 71% semi-span location
in transonic and supersonic speed regions M, =0.9 and 1.2
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Fig.8 Comparison of drag polar curves between computed and experimental results at M, =0.9 and Re=12.75x 10°.
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Fig.9 Comparison of CM-CL curves between computed and experimental results at M., =0.9 and Re=12.75x 10°,
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Table1l Sidedip characteristic at M, =0.9, Re=12.75x 10°%, a =4.0° ,3 =0.0,5.0° .

Numerical method Angle of sideslip | Sideforce coefficient | Rolling moment coefficient | Yawing moment coefficient
Modeling of air intake and
exhaust nozzle B ° cYy CR CN
Inviscid Comp. ® 0.0 0.0000 0.0000 0.0000
Fairing configuration 5.0 -0.1282 -0.0120 0.0329
Viscous Comp. 0.0 0.0000 0.0000 0.0000
Fairing configuration 5.0 -0.1073 -0.0134 0.0240
Viscous Comp. 0.0 0.0000 0.0000 0.0000
Flow-through configuration 5.0 -0.1098 -0.0130 0.0237
Fin L Fin L
m3 5 BB 5
Fin R apg o Fin R op o
Vertical Tail Vertical Tail
Horizontal Tail L Horizontal Tail L
Horizontal Tail R Horizontal Tail R
Fuselage Fuselage
Main Wing L Main Wing L
Main Wing R Main Wing R
Overall Overall
-020 -015 -010 -005 000 005 010 -006 -004 -002 000 002 004 006
Side Force Coefficient CY Rolling Moment Coefficient CR
a Side force coefficient CY b Rolling moment coefficient CR
) ) \
Fin L ap s Fin L mp s
Fin R op o0 Fin R og o
Vertical Tail Vertical Talil

Horizontal Tail L Horizontal Tail L

Horizontal Tail R Horizontal Tail R

Fuselage Fuselage
Main Wing L Main Wing L
Main Wing R Main Wing R
Overall Overall
-001 0.00 001 0.02 003 0.04 -001 000 o.;n o.;)2 003 004
Yawing Moment Coefficient CN Yawing Moment Coefficient CN
Viscous Comp.  S-A model Inviscid Comp.

c Yawing moment coefficient CN

Fig.10 Latera force and moment coefficients of each airframe component for the F-16A aircraft fairing configuration
atM,=0.9, a =4.0° B =0.0,5.0° and Re=12.75x 10°.
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Fig.11 Intaketota pressure recovery ratio distributionsin cross sections A to D
aM,=0.6, a =11°, B =14.6° and Re=8.5x 10°.
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| - IR T
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Fig.12 Comparison of total pressure recovery ratio distributions on engine compressor face between computed and experimental results
at M, =0.6, Re=8.5x 10° a =1.1° and B =14.6° .
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