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The original CIP-CUP method has been improved by introducing the state equation of Tait form so as to present the 

real pressure-density relation of complex water. Computational results of 1D shock tube problem and 2D shear driven 
cavity water flow have demonstrated its accuracy and validity of compressible and incompressible flow simulations. 
The method has been applied to the flow simulation of impulsively started submerged water jet. The computational 
result agrees with the experimental one of Gharib et al. The result shows that vortex rings are formed at the head of 
jet and move forward as developing of the jet flow. The total circulation of vortices increases linearly with the vortex 
formation time during the jet injection. 

 
 
1. INTRODUCTION 

The present research is concerned on the topic relevant to the 
direct numerical simulation of the submerged water. Although 
many experimental studies have been made from fundamental and 
practical viewpoints [1][2], there are a few theoretical and numerical 
ones [3]. In the flow of the submerged water jets, the 
compressibility of the fluid becomes prominent near the jet 
periphery because of cavitation inception, while in the far field the 
flow is essentially incompressible. Both the compressible and 
incompressible features coexist in the flow at the same time. It is 
difficult to construct suitable models to deal with both 
compressible and incompressible flows of the submerged water jet 
simultaneously. Simulations of the compressible flow and the 
incompressible flow are usually made by different numerical 
schemes. For the compressible flow, some elaborate schemes, 
such as the TVD scheme [4], have been developed but they are 
ineffective for the incompressible flow. On the other hand, 
schemes for the incompressible flow, such as the Marker and Cell 
(MAC) method [5], cannot treat phenomena associated with sharp 
discontinuities such as the submerged water jet flow. 

A cubic interpolated pseudo-particle combined unified 
procedure (CIP-CUP) has been proposed [6], and then applied to 
various problems of fluid flow [7]. It has an advantage of treating 
both compressible and incompressible flows simultaneously. The 
unique feature that of this method is expected to be useful for the 
simulation of complex phenomena such as a submerged water jet 
where cavitation inception occurs in vortices around the jet 
periphery and cavitating regions reveal strong compressibility due 
to the growth and collapse of numerous bubbles. 

The original CIP-CUP method is based on the CIP method 
proposed for solving hyperbolic equation governing the 
compressible flow. For the computation of incompressible liquid 
flow, an artificial compressibility is introduced according to the 
sound speed in the fluid under assumption of adiabatic fluid. 
Although the treatment makes it possible to calculate the 
incompressible flow, the process cannot present the physical 
property of the fluid correctly. On this consideration, the 
CIP-CUP procedure is improved by introducing a state equation 
of Tait form, which presents the pressure-density relation of water. 
Had been validated through computations of benchmark problem, 
the improved CIP-CUP method (henceforth denoted as CCUP-I) 
is applied to the simulation of two-dimensional submerged water 
jet flow. In this way, the water is treated as a real compressible 
fluid with small compressibility. But cavitation is not included for 

the main purpose of the present work is to seek a possibility to the 
simulation of complex submerged water jet flow.  

2. GOVERNING EQUATIONS  
The flow to be researched is assumed to be two-dimensional. 

Then, conservation equations of mass and momentum are 
respectively given by 
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in which x1 and x2 are respectively the two components of a 
position vector, u1 and u2 the two components of a velocity vector, 
ρ the fluid density, p the fluid pressure, t the time, µ the dynamic 
viscosity coefficient which is assumed to be constant, δ ij

 the 

Kronecker delta function (δ ij
i j= =1 if and δ ij

i j= ≠0 if ). 

Concerning the conservation equation of energy, the water 
temperature is assumed to be constant. Therefore it can be 
removed from a set of governing equations. Instead, for making 
Eqs.(1) and (2) close, we introduce the state equation of water in 
general form of p p T= ( , )ρ , from which we obtain,  
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For a constant temperature, it is simplified as,  
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This is the case of barotropic fluids and a pressure-density relation 
can be given by Tait equation [8] as follows, 
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where B and γ are respectively constant values, 3.049×108 Pa and 
7.15 for bubbly water [9], and the subscript 0 denotes a reference 



Copyright © 2000 by JSCFD 2 

state which will be taken to be the atmospheric one here. For B=0, 
Eq.(5) reduces to the adiabatic case for gas media. From Eqs.(1), 
(4) and (5), we obtain the following governing equation of 
pressure, 
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Equations (1), (2) and (6) are a set of governing equations, which 
should be solved. 

3. NUMERICAL PROCEDURE  
The governing equations in the preceding section can be written 

in the following form, 
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in which the bracket {} denotes a matrix and T the transposition 
of the matrix. Following the CIP-CUP procedure, the equations 
are respectively split into a non-advection phase and an advection 
phase as follows, 
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The equation (8) of non-advection phase is further decomposed 
into inviscid and viscous parts, which are computed by a finite 
difference method. A tentative value of inviscid pressure p** at the 
new time step of t+∆t is computed from by the following Poisson 
equation, 
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where the superscript n denotes the value of the previous time step 
t, ∆t the time interval. The new density ρ* and the inviscid 
velocity ui

** are calculated according to the inviscid pressure p**. 
Then non-advection phases of velocity ui

* and the pressure p* are 
obtained by adding the viscosity term to the inviscid part. Their 
final values are expressed as follows.  
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where the superscript ** denotes the value of inviscid part and * 
the value of non-advection phasw. Qu and Qp are artificial 
viscosity terms, which are necessary to reduce numerical 
oscillations of solutions [10]. These terms are given as follows [11],  
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The artificial viscosity is given by, 
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in which α is a control parameter for the artificial viscosity and it 
is usually set around 0.5-1.0 for the case of gas flow [11], and a 
smaller value for liquid flow.  

The above non-advection phase is numerically calculated by the 
finite difference based on the MAC algorithm, and a fully 
staggered arrangement of velocity components and pressure has 
been adopted [12]. The velocity components are taken at the 
centers of cell surfaces in the same directions of velocity 
components, while the pressure and density are taken at the cell 
center. This staggered arrangement has an advantage to suppress 
oscillations in the pressure due to a strong coupling between 
velocity and pressure. The first-order spatial derivatives of flow 
variables, those are required in the computations of advection 
phase, are defined at the same positions as dependent flow 
variables. The Poisson equation of pressure is solved by the under 
relaxation technique for the high speed of pressure propagation in 
liquid flow. 

The equation (9) of advection phase is solved by the cubic 
interpolated pseudo-particle (CIP) method. The value of advection 
phase f t t( , )x + ∆  at the time step t+∆t is obtained by shifting 

an interpolated profile of non-advection phase as follows,  

f t t F t t fv( , ) ( , ) *x x u+ = − +∆ ∆ ,   (16) 

where the function F t t( , )x u− ∆  is a cubic spline defined by the 
results of the non-advection phase and first-order spatial 

derivatives [13]. fv
*
 is a numerical viscosity term to improve the 

accuracy of CIP computation in the local of sharp discontinuity 
and it is given as [14],  
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in which β is a control parameter of constant greater than zero for 
the numerical viscosity. The first-order spatial derivatives are 
given as follows from equation (7). 
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The same as primary field variables, the first-order derivatives are 
independently preserved and calculated by advection of CIP 
method. This is different from other conventional methods, where 
the first-order spatial derivatives are usually estimated by using 
the preserved value of primary variables. It enables one to 
construct an interpolation function with relatively less 
computation grids. The cubic spline function for interpolation, 
which is essential to the calculation of advection phase, is defined 
between adjacent positions of the arrangement for the flow 
variable. 

Summarizing above, the whole procedure of CCUP-I method 
can be expressed as follows,  

f fn n+ =1 L L2 1 .         (19) 

where L1 denotes the operator of non-advection phase and L2 the 
operator of advection phase. f n+1 is the computation result of flow 
variables at the time step of t+∆t.   

4. NUMERICAL RESULTS 

4.1 Validity of compressible flow simulation 
For compressible flow, the CCUP-I method is the same as the 

CIP-CUP method, which has good accuracy for the computation 
of advection phase. For the purpose of validation, we have used 
the CCUP-I method to the flow simulation of one-dimensional 
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shock tube problem where the initial condition is given as,  
p=1.0, ρ=1.0 for 0≤x≤0.5, and p=0.1, ρ=0.1 for 0.5<x≤1.0.  

The specific heat ratio is γ=5/3. Figure 1 shows the effects of 

artificial viscosity coefficient α for non-advection computation 
and the numerical viscosity β for advection computation. From 
the figure we understand that α and β should employ a value 

 

Fig.1 Computational result of density distribution  

 

Fig.2 Comparison of numerical results to exact solutions 
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greater than zero in order to suppress the numerical jump shown 
in Fig.1 (b) and the numerical oscillation shown in Fig.1 (d). 
Figure 2 (a) and (b) show numerical results of density distribution 
at the instant t=0.04s and t=0.2s while (c) and (d) do the velocity 
distribution the same instant. Analytic exact solutions are shown 
with solid line. The computational result coincides with the 
analytic one well.  
 
4.2 Validity of incompressible flow simulation 

As for the simulation of incompressible flow, a critical point is 
how to handle the conservation equation of mass. The CCUP-I 
method deals with the liquid as a real compressible fluid with very 
small compressibility by introducing the state equation 
representing the pressure-density relation. For the purpose of 
validation, a simulation of two-dimensional shear driven cavity 
water flow, which is a popular benchmark problem of 
incompressible flow, has been treated. Figure 3 (a) shows the 
result of the streamline distribution at the instant of t=30s when 
the flow is thought to be well developed. The corresponding 
velocity profiles along centric lines are shown in Fig.3 (b). The 
computational result is in good agreement with that given by Ghia 
et al. [15]. The present procedure is found to be valid. 

4.3 Application to submerged water jet flow simulation  
4.3.1 Boundary and initial conditions 

The schematic configuration of submerged water jet to be 

considered here is shown in Fig.4, in which the jet is injected into 
still water from an orifice at a given velocity. The computation 
domain is composed of a rectangular plane of width H=0.5m and 
length L=1.0m. The orifice is set in the coaxial form with the 
horizontal centric line and its diameter is d=0.02m. The boundary 
conditions for velocity are set as follows: 

u=uin and v=0 0and == vuu in  for –0.5d < y <0.5d at x = 0,  

u=v=0 for HyddyH 5.05.0,5.05.0 ≤≤−≤≤− , (x = 0), 

0==vu  for Lx <<0  at Hy 5.0±= , 

For the pressure, Neumann boundary conditions of pressure gradient 
given by Eq.(7) are imposed at the inlet and all solid wall boundaries.  

Near the outlet boundary of HyH 5.05.0 ≤≤−  at Lx = , the 
flow remains unsteady for the value of time consideration. The 
presence of vortices propagating downstream makes it difficult to 
specify an accurate pressure condition. Various treatments to 
determine flow quantities on the boundary are reported [16]. The 
following one giving the best result is applied here. 
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The pressures on the outlet boundary is obtained by integration of 
yp ∂∂  performed along the boundary by imposing 0pp =  at 

the first point of x=L and y=0. 
As the special request of CIP method, boundary conditions for 

the first spatial derivatives of flow variables are also need to be 
defined. In the present computation, the normal gradient is given 
by the second-order one-side finite difference and the tangential 
gradient is given by the second-order central finite difference. 

As shown in Fig.5, the jet is impulsively started with the 
following time dependent inlet velocity corresponding to Gharib 
et al.’s experiments [17], 
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(a) Contours of stream function 

(b) Velocity profiles  

Fig.3 Shear-driven cavity water flow (Re=1000) 
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Fig.4 Configuration of submerged water jet 

Fig.5 Profile of jet injection velocity versus time 
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where t0 is an acceleration time, T the duration time of jet 
injection and u0 a constant velocity. 

Computational meshes (60×50) are shown in Fig.4. The step of 
time marching is taken to be 5100.1 −×=t∆ s. The mesh size and 
the interval of time step are adjusted by performing mesh and time 
step refinement so as to obtain accurate solutions in the region of 
interest. For the Poisson equation, a convergence criterion ε of 
relative changes of solutions is given to be 1.0×10-3. 

4.3.2 Vortex formation and total circulation 
The flow of submerged water jet is unsteady. Vortex rings are 

formed around the jet as time lapse. The total circulation of vortex 
rings can be calculated by 

∫∫= Ω
ΩωΓ d

total
,        (22) 

where ω denotes the vorticity of vortices formed in the flow and 
Ω the computation domain. According to the experiment of 
Gharib et al. [17], the total circulation is a function of vortex 
formation time defined as,  

dtut in /* = ,    (23) 

where dtutu
t

inin ∫−=
0

1  is an average velocity during jet injection. 

Figure 6 shows computational results of the one impulse jet 
injection corresponding to Gharib et al’s experiment, where the 
acceleration time of jet injection is t0=0.001s and the duration 
time of jet injection is T=0.6s. The velocity u0 is taken to be 
0.2m/s here to avoid cavitation. Taking u0 as the reference 
velocity and the orifice diameter d as the reference length, we get 
the Reynolds number 310984.3 ×=eR . 

Figure 6 (a), (b) and (c) are respectively distributions of 
vorticity contour at the instants when t* equals 5, 10 and 40. They 
agree with the experimental ones. Figure 7 shows the variation of 

the total circulation, where the total circulation totalΓ  is 

normalized as, 

duintotal /* ΓΓ = .      (24) 

The computational results are in good agreement with the 
experimental ones shown by circles except in initial stages of 
vortex formation. The discrepancy of the initial stages may be due 
to that the motion vortices is influenced by the inlet solid 
boundary. It is difficult to distinguish the real vortices with their 
bound vortices from the boundary. Therefore, the computational 
domain of the total circulation is shifted a little from the boundary 
here to avoid the circulation of the wall bound vortices. So, the 
total circulation is to be less than the experimental one in the 
initial stages. As vortices move away from the boundary, the 
effect of boundary becomes smaller and the computational result 
approaches the experimental one. 

Figure 7 shows some computational results with different mesh 
size. The results do not scatter so much, and they are not so 
sensitive to the mesh size within the range of adopted meshes. 
The figure demonstrates that the total circulation of vortices 

  (a) t*=5      (b) t*=10      (c) t*=40   

Fig.6 Vortexes formed in submerged water jet (T=0.6s) 
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Fig.7 Total circulation evaluated for impulse jet (T=0.6s) 
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=0.1 

 

(b) At W
=5 

Fig.8 Pressure distributions of impuse jet 

Fig. 9 Pressure and vorticity distributions on section 
crossing vortex centers (t*=5) 
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linearly increases with the vortex formation time within the 
duration of jet injection. The circulation maintains a constant 
value for a while and then decays according to the time lapse after 
the jet injection stopped. 

4.3.3 Pressure distribution 
Corresponding to the flow structure shown above, the pressure 

distribution is an important dynamic index having great effect on 
the performance of submerged water jet. Figure 8 shows pressure 
distributions in the different time stages. At the instant of t*=0.1, 
the isobar distribution of Fig.8 (a) demonstrates that the pressure 
wave radiates at the initial of the jet injection. The pressure wave 
decays within a short time. At the instant of t*=5, the pressure 
distribution is shown in Fig.8 (b) where low-pressure regions are 
formed. Compared with the Fig.6 (a), the figure shows that local 
areas of vortex ring appear to be low-pressure regions. The 
pressure distribution in vortices is shown in Fig.9 with solid line, 
where the abscissa is the vertical section through the vortex 
centers, and the ordinate is the pressure indicated by the following 
pressure coefficient, 

2

0

0

5.0 u

pp
C

p ρ
−

= .        (25) 

The dash line shows corresponding vorticity distribution, which 
is concentrated at the vortex centers located on the jet periphery. 
The pressure reaches its minimum values at the vortex centers. As 
the vortex radii increases, the pressure rises sharply. 

It is well known that the cavitation inception occurs when a 
nucleus (e.g. microscopic bubble or particle with air trapped in it 
crevices) is explored to a sufficiently low pressure to cause 
unstable growth and collapse of cavity. Rigorous cavitation 
inception criteria have been discussed in [18]. The conditions for 
cavitation inception are typically indicated by the cavitation 
inception index, 
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0
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where pi is the static pressure, and pv the vapor pressure of the 
liquid. The cavitation inception index takes its minimum value at 
the centers of vortexes. Thus, cavitation inceptions easily take 
place at the centers of vortexes on the periphery of the jet. This 
agrees with an experimental finding that the lowest pressure 
occurred in the core of primary vortexes, where cavitation 
inception occurred [19]. Cavitation experiments show that the 
cavitation inception index is closely connected to the jet flow 
structure [20][21]. The reason may be due to that the local static 
pressure determining the cavitation inception index is mainly 
dependent on the vortex structure, the size and the strength of the 
vortex.   

5. CONCLUDING REMARKS 
The original CIP-CUP method has been improved by 

introducing the state equation of Tait form so as to present the 
pressure-density relation of water correctly. The method is 
capable of calculating incompressible and compressible flow 
simultaneously and thought to be advantageous to the direct 
simulation of complex water flow. Its numerical property has been 
investigated through computations of compressible 1D shock tube 
problem. Computational results of 2D shear driven cavity water 
flow have proved its validation of incompressible flow simulation.  

The improved CIP-CUP method has been applied to the flow 
simulation of impulsively started submerged water jet. 
Computation has confirmed the experimental results of Gharib et 
al. The result shows that vortex rings are formed at the head of jet 
and move forward as developing of the jet flow. Their vorticity 
concentrates at the vortex centers located around the jet periphery. 
The total circulation of vortices increases linearly with the vortex 
formation time within the duration of jet injection.  

Local areas of vortex centers appear to be low-pressure regions. 

The pressure of vortices reaches its minimum value at vortex 
centers and increases sharply with increasing of vortex radii. Thus 
the cavitation inception index takes the minimum value at vortex 
centers located around the jet periphery where cavitation 
inceptions easily take place. 

 
REFERENCES 
[1] Ymamaguti, A and Shimizu, S., Erosion due to Impingement 

of Cavitation Jet, Trans. ASME, Journal of Fluid Engineering, 
vol.109, (1987), 442-447. 

[2] Ooi, K. K., Scale Effects on Cavitation Inception in 
Submerged Water Jets: A New Look, Journal Fluid 
Mechanics, Vol.151, (1985), 367-390. 

[3] Lichtarowucz, A., Jet Cutting Technology, Kluwer Acdemic 
Publishers, 1992, 633.  

[4] Harten, A., High Resolution Schemes for Hyperbolic 
Conservation Laws, Journal Computational Physics, Vol.49, 
(1983), 357-393. 

[5] Haelow, F. H. and Welch, J, E., The Marker and Cell Method, 
Physics Fluids, Vol.8, (1965), 2182-2189. 

[6] Yabe, T and Wang, P. Y., Unified Numerical Procedure for 
Compressible and incompressible fluid, Journal of the 
Physical Society of Japan, Vol.60, No.7, (1991), 2105~2108. 

[7] Xiao, F. and Yabe, T., Computation of complex flow 
containing rheological bodies, Computation Fluid Dynamics 
Journal, Vol.8, No.1, (1999), 43-49. 

[8] Prospertti, A. and Lezzi, A., Bubble dynamics in a 
compressible liquid. Part 1. First order theory, Journal Fluid 
Mechanics, Vol.168, (1986), 457-578.  

[9] Fujikawa S. and Akamatsu T., Effects of the non-equilibrium 
condensation of vapor on the pressure wave produced by the 
collapse of a bubble in a liquid, Journal Fluid Mechanics, 
Vol.97, (1980), 481-512.  

[10] Yabe, T., A Universal Cubic Interpolation Solver for 
Compressible and Incompressible Fluids, Shock Waves, Vol.1, 
(1991), 187-195. 

[11] Utsumi, T., Differential algebraic hydrodynamics solver with 
cubic-polynomial interpolation, Computational Fluid 
Dynamics Journal, Vol.4, No.2, (1995), 225-238. 

[12] Ferziger, J. H. and Milovan, P., Computational Methods for 
Fluid Dynamics, Springer, 2nd ed., (1999), 198-203.  

[13] Yabe, T. and Aoki, T., A Universal Solver for Hyperbolic 
Equations by Cubic-Polynomial Interpolation, Computer 
Physics Communications, Vol.66, (1991), 219-242. 

[14] Tang, H., Zhang, D. and Lee, C., Analysis and modification 
of CIP method for hyperbolic Equations, Computational Fluid 
Dynamics Jurnal, Vol.6, No.3, (1997), 227-236. 

[15] Ghia, U., Ghia K. N. and Shin C. T., High-Re Solution for 
Incompressible Flow Using the Navier-Stockes Equations and 
a Multigrid Method, Journal Computational Physics, Vol.48, 
(1982), 387-411. 

[16] Peyret, R. and Taylor, T. D., Computational Methods for 
Fluid Flow, Springer, 3ed., (1990), 78-79. 

[17] Gharib, M., Rambod, E. and Shariff, K., Universal Time 
Scale for Vortex Ring Formation, Journal Fluid Mechanics, 
Vol.360, (1998), 121-140.  

[18] Joseph, D. D., Cavitation and the State of Stress in a Flowing 
Liquid, Journal Fluid Mechanics, Vol.366, (1998), 367-378. 

[19] O’Hern, T. J., An Experimental Investigation of Turbulent 
Shear Flow Cavitation, Journal Fluid Mechanics, Vol.215, 
(1990), 365-391. 

[20] Gopalan, G., Katz, J. and Knio, O., The Flow Structure in the 
Near Field of Jets and Its Effect on Cavitation Inception, 
Journal Fluid Mechanics, Vol.398, (1999), 1-43. 

[21] Katz, J. and O’Hern, T. J., Cavitation in Large Scale Shear 
Flow, Trans ASME Journal Fluids Engineering, Vol.108, 
(1986), 373-376. 

 
 


