気象モデルに用いられる乱流モデルの比較研究 Comparative Investigation of Turbulence Models in Atmospheric Simulation

金 湘栢 大阪大学大学院工学研究科,〒565-0871 吹田市山田丘2-1, Email:sbkim@ga.eng.osaka-u.ac.jp
 山口 克人 大阪大学大学院工学研究科,〒565-0871 吹田市山田丘2-1, Email:yamaguti@ga.eng.osaka-u.ac.jp
 惣田 訓 大阪大学大学院工学研究科,〒565-0871 吹田市山田丘2-1, Email:soda@ga.eng.osaka-u.ac.jp
 Sangbaek KIM, Grdaueate School of Eng., Osaka Univ., 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
 Katsuhito YAMAGUCHI, Grdaueate School of Eng., Osaka Univ., 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
 Satoshi SODA, Grdaueate School of Eng., Osaka Univ., 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan

Five types of turbulence models, Yamada-Mellor 2.25 level(YM2.25), Yamada-Mellor 2.25+q²l level (YM2.25+ q²l), Yamada-Mellor 2.5 level(YM2.5) model, standard κ - ϵ model(SKEM) and κ - ϵ algebraic stress model (KEASM), were applied to the Wangara atmospheric simulation. KEASM can express the constant value C_µ(=0.09) used in SKEM, as the variables which are functions of the flux richardson number. Consequently, KEASM could simulate well the mixing layer height of the Wangara data.

1.研究背景および目的

気象現象には様々なスケールの現象があるが、特に海陸風 などの局地風の現象スケールはメソスケールと呼ばれるもの であり、およそ数 10km 程度のものである。メソスケールの気 象現象では、季節変動よりも日変動が卓越するため、その数 値計算では1日間の変動の計算精度が重要である。また、工 場、発電所、焼却場などの影響を調査する大気環境アセスメ ントには高い再現性の局地気象モデルが必要である。

ー方、メソスケールの気象現象の駆動源となるのは温度差 による浮力であり、鉛直方向の温度分布が大きく影響する。 また、静力学近似が成り立つスケールの大気運動では、鉛直 風速は水平風速に比べ小さくなり、鉛直方向の熱と運動量の 乱流輸送が大きく現象を支配する。このことにより、高い精 度の局地気象モデルの計算では、鉛直方向の乱流モデルが重 要となり、その計算精度が結果に大きく影響を与える。

乱流モデルの発展過程は、乱流輸送効果を平均量の勾配に 直接結びつけた単純な渦拡散モデルから始まった。Pielkeら ⁽¹⁾は混合層高度だけを考慮して渦拡散係数を求める簡単な方 法⁽²⁾を局地気象モデルへ適用して、大気環境評価を行ったが、 地表面での複雑な乱流輸送効果を再現することができなかっ た。それ以後、モデルの汎用性を高めるため、最低2つの乱 流量を利用して乱流輸送効果を計算したモデルが提案された。 また、渦拡散モデルの欠点を改良するため、レイノルズ応力 を直接取り扱うモデルの研究も活発に展開されている⁽³⁾。し かし、様々な乱流モデルが発展しているにも関わらず、異な る乱流モデルの比較研究が不十分で、各乱流モデルの特徴把 握と定量的な評価が明確ではない。

本研究は現在広く利用されている乱流モデルを取り上げて、 その乱流モデルの関連性を理論的に評価し、Wangara 観測の 再現計算によりその特徴を把握することを目的とする。

2.研究対象

気象モデルで広く利用されてきた Yamada-Mellor(YM)モデ ルは現在レベル1から4までのカテゴリーが提案されでいる ⁽⁴⁾⁽⁵⁾。レベル2.5以下は渦拡散モデルとして乱流エネルギー、 乱流長さスケールと安定度関数を利用して乱流輸送効果を計 算し、レベル3、4はレイノルズ応力を直接取り扱うモデルで ある。

一方、標準 κ - ϵ モデル(Standard κ - ϵ model, SKEM)と κ - ϵ 代 数応力モデル(κ - ϵ Algebraic stress model, KEASM)は室内気 流解析など流体工学において広く利用されている乱流モデル であり、乱流エネルギーとその消散率を利用して乱流輸送効 果とレイノルズ応力を計算するモデルである。最近、これら の乱流モデルは気象モデルへの適用とともに、YM モデルとの 比較研究が試みられている⁽⁶⁾。

本研究の対象乱流モデルとして、渦拡散モデルである YM2.25、 YM2.25+q²l、YM2.5、SKEM とレイノルズ応力モデル である KEASM を取り上げた。そして、鉛直1次元性が確保さ れると考えられる Wangara 観測結果⁽⁷⁾をこの5つの乱流モデ ルを用いて数値計算し、その特性を検討した。

渦拡散モデルの大きな特徴は乱流レイノルズ応力を渦拡散 係数と平均量の鉛直勾配で表現することである。

$$-\overline{uw} = K_{vm} \frac{\partial U}{\partial z}$$

$$-\overline{vw} = K_{vm} \frac{\partial V}{\partial z}$$

$$-\overline{wq} = K_{vh} \frac{\partial \Theta}{\partial z}$$
 (1)

2 - 1 . YM モデル (YM2.25、YM2.25+q²l、YM2.5)

$$K_{vm} = q\ell S_M$$

$$K_{vh} = q\ell S_U$$
(2)

YM モデルの中で YM2.25、YM2.25+ q^2l と YM2.5 モデルは、 渦拡散モデルとして、乱流エネルギー($q^2/2$)、乱流長さスケ ール(l)、安定度関数(s_M , s_H)を利用して渦拡散係数を求める。 このとき、乱流エネルギー、乱流長さスケール、安定度関数 を求める方法により YM モデルのレベルが決まる。Table 1 に 各レベルの概要を示す。

Table 1. YM モデルの概要

レベル	YM2.25	YM2.25+ q ² l	YM2.5
乱流長さスケール	式(A2)	式(A3)	式(A2)
安定度関数	式(A4)		式(A7)
乱流エネルギー	式(A1)		

乱流長さスケールは Blackdar⁽⁸⁾の積分式を用いる方法と *q*²*l* の微分方程式を解く方法の 2 つがある。しかし、Blackdar の方法は、乱流エネルギーを鉛直方向に積分するため、乱流 長さスケールの鉛直方向の特徴がなくなる。また、*q*²*l* 微分方 程式を利用する方法は式(A3)の係数 E₂を調節することにより、 上層での乱流長さスケールの発達を抑制することができるが、 その適用の根拠が不十分である(Fig.1)。

Fig.1 各乱流モデルにおいて、解析された流長さス ケールの鉛直プロフィール。(Wangara 再現計 算 Day33 1500LST)

Fig. 2 YM2.25 と YM2.25+q²l においての安定度関数。

Fig. 3 YM2.5 においての安定度関数(a)S_M、(b)S_H。

安定度関数を求める方法により YM2.25、YM2.25+ q^{2l} と YM2.5 モデルは区別される。YM2.25 と YM2.25+ q^{2l} は、YM2.5 モデルを局所平衡($\frac{P+G}{q}=1$)の仮定をしてフラックスリチャ

ードソン数(R_f)の関数で簡略化したモデルである。しかし、 臨界フラックスリチャードソン数(R_{fc})が0.191より大きい安 定条件では解析に制限がある(Fig.2)。YM2.5 モデルは局所平 衡を仮定せずに G_M 、 G_H の関数で求められる。ただし、 G_H =0.0338 で不連続となり、($\overline{w^2}/q^2$) < 0.12 の区間で S_M 、 S_H が急激 に増加するので、 $G_H < 0.033$ 、 $G_M < 0.825 - 25.0 * G_H$ の条件⁽⁵⁾で計算 する。したがって、YM2.5 は安定条件では幅広く使用可能で あるが、不安定条件では適用に制約がある(Fig. 3)。

2 - 2 . SKEM

$$K_{vm} = C_m \frac{k^2}{e}$$

$$K_{vh} = C_m \frac{k^2}{e} \frac{1}{S_m}$$
(3)

SKEM は乱流エネルギーとその消散率で渦粘性係数を求める。 s_{τ} (=1.0) は乱流プラントル数、 C_{m} (=0.09) はモデル定数である(Appendix 式(B1)~(B3)参照)。

同じ渦拡散モデルである YM モデルとの比較で、定数 c_{μ} は YM モデルの $\frac{4}{B_1}S_M$ に対応し、中立のときの S_M (=0.4)の値に対 してほとんど一致している($\frac{4}{B_1}S_M$ =0.096)。したがって、定数 *c*_{*x*} は中立条件に対応する係数として、安定度を考慮した *c*_{*x*} の適用が望ましい。

2 - 3 . KEASM

$$-\overline{uw} = C_{mn} \frac{k^2}{e} \frac{\partial U}{\partial z}$$

$$-\overline{vw} = C_{mn} \frac{k^2}{e} \frac{\partial V}{\partial z}$$

$$-\overline{wq} = C_{mh} \frac{k^2}{e} \frac{\partial \Theta}{\partial z}$$

$$K_{vm} = C_{mh} \frac{k^2}{e}$$

$$K_{vh} = C_{mh} \frac{k^2}{e}$$
(5)

SKEM との比較から定数 *c* が安定度を考慮した関数(*R*_f)で表現することができる⁽⁹⁾。

$$C_{mm} = \frac{\mathbf{h}_{8} + \mathbf{h}_{9}\mathbf{h}_{q2}C_{mb}B}{1 + 1.5\mathbf{h}_{3} - \mathbf{h}_{9}\mathbf{h}_{q1}B}$$

$$C_{mb} = -\frac{\mathbf{h}_{q1}}{\mathbf{h}_{n3} + D_{B}\mathbf{h}_{n4}B}$$
(6)

Fig. 4 SKEM の定数 *c* と KEASM の定数 *c* の比較。

$$B = \frac{k^2}{e^2} bg \frac{\partial \Theta}{\partial z} = -\frac{h_{q_3}A}{h_{q_1} + D_g h_{q_4}A}$$
(7)

$$A = \frac{k}{\overline{w^2}} \frac{R_f}{1 - R_f}$$
(8)

中立の場合、 $c_{an} \geq c_{an}$ はそれぞれ 0.12、0.17 で、SKEM の c_{a} よりは大きく解析された。しかし、これは free shear を 仮定した場合で、地面の効果を考慮する(地面効果関数f)と c_{an} 、 c_{an} はともに 0.07 になる(Fig. 4)。本研究では Gibson ⁽⁹⁾により提案された地面効果関数を利用した。

$$f = \begin{pmatrix} \frac{1 - 4.7R_f}{1 - R_f} & (R_f > 0) \\ \frac{(1 - 14R_f)^{0.25}}{1 - R_f} & (R_f \le 0) \end{pmatrix}$$
(9)

運動量渦拡散係数に対する熱的渦拡散係数の比、すなわち、 乱流プラントル数の逆数は YM モデルでは S_{H}/S_{M} 、SKEM で は $1/s_{T}$ 、KEASM では C_{am}/C_{am} で表現される。Fig. 5 は安定 度に従う渦拡散係数比の変化と Businger の観測結果⁽⁹⁾を示 している。安定度を示す指標が Businger の観測結果と異な るが、中立の場合に YM モデルは 1.3、フリシアーの KEASM は 1.5、地面効果関数を考慮した KEASM は 1.0 となり、観 測結果の範囲以内に存在していることが分かる。しかし、不 安定になると、YM モデルは中立から渦拡散係数比があまり 増加しなくなり、観測結果と離れる結果が現れる。そして、 地面効果関数を適用することにより安定条件での渦拡散係数 比がよく解析されることが分かる。

2-4. 境界条件

接地層ではモニンオブコフ相似理論に基づいて YM モデル と SKEM の乱流エネルギー、乱流長さスケール、乱流エネルギ ー消散率は次のように表される。

$$q^{2} = B_{1}^{\frac{2}{3}} u_{*} (f_{m} - V)^{\frac{2}{3}}$$
(10)

$$\ell = kz \tag{11}$$

$$k = \frac{u_*^2}{\sqrt{C_m}} \left(\frac{f_m - V}{f_m} \right)^{\frac{1}{2}}$$
(12)

$$e = \frac{u_*}{kz}(f_m - V) \tag{13}$$

ここで、 u_{*} は摩擦速度、 f_{u} は無次元シアー関数であり、vは 無次元高さで $v = \frac{z}{r}$ と定義されている。Lはモニンオブコフ長

さである。SKEMの乱流エネルギーとその消散率に対して中立 を仮定し、式(10)の関係を適用すると、式(14)のように乱流 エネルギー消散率と乱流長さスケールの関係式が求められる。

Fig.5 渦拡散係数比に対する(a)各乱流モデルと(b) Businger 観測結果(Launder, 1978 で引用)の比較。

式(A11)の YM モデルとの比較から定数 B_1 (=16.6)に対応する ものが SKEM では $\left(2/\sqrt{C_{m}}\right)^{\frac{3}{2}}$ (=17.2)になることが分かる。

Fig.1 の曲線 e は SKEM で求めた乱流エネルギー消散率を 式(14)を利用して変換した乱流長さスケールである。YM モ デルと比較すると乱流長さスケールが上層で滑らかに減少し ていることが分かる。

$$e = \left(\frac{\sqrt{C_m}}{2}\right)^2 \frac{q^3}{l}$$
(14)

3. Wangara 観測データの再現計算および検討

Wangara 観測データは 1967 年 7 月 15 日~8 月 27 日オース トラリアのヘイでされた境界層観測(高度 2Km まで)プロジェ クトのデータである。境界層鉛直構造を 44 日間連続的に観測 したことで、境界層の構造の理解と解析に関連する研究に広 く利用されているデータである。本研究では Day33 0900 LST の観測データを初期条件とし、Day35 0900LST までの、2 日間 の再現計算を 5 つの乱流モデルを用いて行った。ただし、 YM2.25+ *q²l* モデルでの係数 E₂ は 1.33 exp(*z*/500) を利用し、 KEASM は地面効果関数を使用して検討した。

Fig. 6,7,8 は各乱流モデルで解析した温位、水平風速プロフ ィールの時間変動を観測結果と比較して示している。温位は 昼間に地表面の加熱により混合層が発達し、その上に温度逆 転層が現れる。そして、夜になると地表面付近に強い逆転層 が発生する。このような定性的な日変化は5つの乱流モデル すべてにおいて、計算できた。しかし、全般的に混合層高度 が観測値より低く解析された。水平風速の変動パターンを見 ると、昼間に強い乱流混合により水平風速プロフィールが混 合層の内で一定に現れている。夜間になると、地表面付近と

Fig.6 温位(Θ)プロフィールの時間変動。(a)観測値、(b)YM2.25、(c)YM2.25+q²l、(d)YM2.5、(e)SKEM、(f)KEASM。

Fig.7 水平風速(U)プロフィールの時間変動。(a)観測値、(b)YM2.25、(c)YM2.25+q²l、(d)YM2.5、(e)SKEM、(f)KEASM。

Fig.9 各乱流モデルで解析された渦粘性係数(a)K_{vm}、(b)K_vの比較。(Day34 1500LST)

上空で夜間ジェットにより風速ピークが発生する。このよう な現象が各乱流モデルでもよく解析されていることが分かる。 Fig. 9は乱流による鉛直混合が最も活発に発達する Day 34の1500LSTでの渦拡散係数の鉛直分布を示している。 G_{M} 、 G_H によって不安定の場合の適用に制限があるYM2.5が一番弱 く渦拡散係数を解析している。YM2.25とYM2.25+ q^2l は、乱流 長さスケールの解析方法によって大きく影響を受けている。 特に、 q^2l 微分方程式(式 A3)の係数 E₂の適用に対する検討が 要求される。SKEM は熱的渦拡散係数に対しては YM2.25 と同 程度の値が解析されたが、プラントル数を一定(=1.0)に与え ることによって運動量渦拡散係数は YM2.25 より多少大きく 解析された。KEASM は、運動量渦拡散係数において、YM2.25+ q^2l と同程度の大きさで解析されたが、他のモデルと比べて熱 的渦拡散係数が非常に大きく解析されている。 温位のプロフィールで前述したように混合層高度に対して 計算結果が観測結果より低く解析されたので、混合層高度の 時間変動を検討した(Fig.10)。混合層高度は鉛直温位勾配が 中立から安定へ急に変化する高度と定義した。したがって、 昼間に発生する混合層は地表面から発達する強混合層に対し、 夜間に現れる混合層は接地安定層上で発生する弱混合層であ る。しかし、Day34 の 1200LST から 2400LST の間では、大気 全体に弱安定層が現れ、混合層高度の定義が難しい時間帯で ある(Fig.10 の破線)。この時間以外において、各乱流モデル で解析された混合層高度の変動パタ-ンを見ると最大400mぐ らい(YM2.5)計算結果が観測結果より低く混合層高度が解析 されているが、乱流輸送効果を一番強く解析した KEASM が観 測結果をよく再現した。

Fig.10 混合層高度の時間変動に対する計算結果と観測結果の比較。

4.まとめ

各乱流モデルの定数検討から、モデルの関連性と特徴が現 れた。要約すると、(1)YM モデルは乱流長さスケールの解析 方法により、乱流輸送効果の解析程度が大きく異なる結果が 現れた。特に、 q^2l 微分方程式の係数 E_2 に対する検討が望まし い。(2)YM2.5 モデルは他の乱流モデルと比べて大気安定条件 で幅広い適用が可能である。しかし、不安定条件では渦拡散 係数が過小評価される。(3)SKEM は気象モデルへ適用するた めには、大気安定度を考慮した定数の検討が必要である。 (4)KEASM は SKEM の比較から、安定度を考慮して定数 c_x を修 正したモデルである。乱流輸送効果、特に熱的渦拡散係数が 他の乱流モデルと比べて非常に大きくなった。今回、Wangara 再現計算を行った本研究において、KEASM は最もよい再現計 算ができた。

Appendix
A. YM モデル
(1) 乱流エネルギー
$$\frac{\partial}{\partial t} \left(\frac{q^{2}}{2} \right) = P + G - e + \frac{\partial}{\partial z} \left[qlS_{q} \frac{\partial}{\partial z} \left(\frac{q^{2}}{2} \right) \right]$$
(A1)

$$l = l_0 \frac{kz}{kz + l_0}, l_0 = \frac{0.1 \int_0^{\infty} zq \, dz}{\int_0^{\infty} q \, dz}$$
 (Blackadar の積分式) (A2)

$$\frac{\partial}{\partial t} \left(q^2 l \right) = l E_1 \left[P + G \right] - \frac{q^3}{B_1} \left[1.0 + E_2 \left(\frac{l}{kz} \right)^2 \right] + \frac{\partial}{\partial z} \left[q l S_1 \frac{\partial}{\partial z} \left(q^2 l S_1 \right) \right]$$
(A3)

(3) 安定度関数 VM2 25 VM2 25 + ~²

$$YMZ. 25, YMZ. 25+q^{-1}$$

$$S_{M} = C_{M} \frac{(R_{f_{c}} - R_{f})(R_{f_{1}} - R_{f})}{(1 - R_{f})(R_{f_{2}} - R_{f})}$$

$$S_{H} = C_{H} \frac{(R_{f_{c}} - R_{f})}{(1 - R_{f})}$$
(A4)

$$R_{g} = \frac{bg \frac{\partial \Theta}{\partial z}}{\left[\left(\frac{\partial U}{\partial z}\right)^{2} + \left(\frac{\partial V}{\partial z}\right)^{2}\right]}$$
(A5)

$$R_{f} = 0.6588 \left[R_{g} + 0.1776 - (R_{g}^{2} - 0.3221R_{g} + 0.03156)^{1/2} \right]$$
(A6)
YM2.5

 $S_{M} \left[6A_{1}A_{2}G_{M} \right] + S_{H} \left[1 - 3A_{2}B_{2}G_{H} - 12A_{1}A_{2}G_{H} \right] = A_{2}$

$$S_{M}\left[1+6A_{1}^{2}G_{M}-9A_{1}A_{2}G_{H}\right]-S_{H}\left[12A_{1}^{2}G_{H}+9A_{1}A_{2}G_{H}\right]=A_{1}(1-3B_{3})$$

$$G_{M} = \frac{l^{2}}{q^{2}} \left[\left(\frac{\partial U}{\partial z} \right)^{2} + \left(\frac{\partial V}{\partial z} \right)^{2} \right]$$
(A8)

$$G_{H} = -\frac{l^{2}}{q^{2}} \mathbf{b} g \frac{\partial \Theta}{\partial z}$$
(A9)

(4) 乱流エネルギー消散率

$$e = \frac{q^3}{B_l}$$
 (A10)

(5)定数

B.SKEM

(1)乱流エネルギー

$$\frac{\partial k}{\partial t} = P + G - e + \frac{\partial}{\partial z} \left(\frac{K_{vm}}{s_k} \frac{\partial k}{\partial z} \right)$$
(B1)
(2)乱流エネルギー当地変

$$\frac{\partial \mathbf{e}}{\partial t} = C_1 \frac{\mathbf{e}}{k} \left[P + C_3 G \right] - C_2 \frac{\mathbf{e}^2}{k} + \frac{\partial}{\partial z} \left(\frac{K_{ww}}{\mathbf{s}_e} \frac{\partial k}{\partial z} \right)$$
(B2)

(3) 定数

$$(s_k, s_e, C_1, C_2) = (1.0, 1.3, 1.44, 1.92)$$

 $C_3 = \begin{cases} 0.0 & (G < 0) \\ 1.0 & (G \ge 0) \end{cases}$
(B3)

C.KEASM
(1)乱流エネルギー
$$\frac{\partial k}{\partial t} = P + G - e + \frac{\partial}{\partial z} \left(C_{Dk} \overline{w^2} \frac{k}{e} \frac{\partial k}{\partial z} \right)$$
(C1)

$$\frac{\partial \mathbf{e}}{\partial t} = C_1 \frac{\mathbf{e}}{k} \left[P + C_3 G \right] - C_2 \frac{\mathbf{e}^2}{k} + \frac{\partial}{\partial z} \left(C_{De} \overline{w^2} \frac{k}{e} \frac{\partial k}{\partial z} \right)$$
(C2)

(A7)

$$\overline{uw} = -\frac{h_{k}}{1+1.5h_{3}} \overline{w^{2}} \frac{k}{e} \frac{\partial U}{\partial z} + \frac{h_{5}}{1+1.5h_{3}} \frac{k}{e} bg\overline{uq}$$

$$\overline{vw} = -\frac{h_{k}}{1+1.5h_{3}} \overline{w^{2}} \frac{k}{e} \frac{\partial V}{\partial z} + \frac{h_{9}}{1+1.5h_{3}} \frac{k}{e} bg\overline{vq} \qquad (C3)$$

$$\overline{uq} = h_{q_{1}} \overline{uw} \frac{k}{e} \frac{\partial \Theta}{\partial z} + h_{q_{2}} \overline{wq} \frac{k}{e} \frac{\partial U}{\partial z}$$

$$\overline{vq} = h_{q_{1}} \overline{vv} \frac{k}{e} \frac{\partial \Theta}{\partial z} + h_{q_{2}} \overline{wq} \frac{k}{e} \frac{\partial V}{\partial z}$$

$$\overline{wq} = \frac{h_{q_{1}}}{h_{q_{3}}} \overline{w^{2}} \frac{k}{e} \frac{\partial \Theta}{\partial z} + h_{q_{2}} \overline{wq} \frac{k}{e} \frac{\partial V}{\partial z}$$

$$\overline{wq} = \frac{h_{q_{1}}}{h_{q_{3}}} \overline{w^{2}} \frac{k}{e} \frac{\partial \Theta}{\partial z} + h_{q_{2}} \overline{wq} \frac{k}{e} \frac{\partial V}{\partial z}$$

$$\overline{wq} = h_{q_{1}} \overline{w^{2}} \frac{k}{e} \frac{\partial \Theta}{\partial z} + h_{q_{2}} \overline{wq} \frac{k}{e} \frac{\partial V}{\partial z}$$

$$\overline{wq} = \frac{h_{q_{1}}}{h_{q_{3}}} \overline{w^{2}} \frac{k}{e} \frac{\partial \Theta}{\partial z} + h_{q_{3}}} bg\overline{q^{2}} \frac{k}{e}$$

$$\overline{q^{2}} = -D_{R} \overline{wq} \frac{k}{e} \frac{\partial \Theta}{\partial z}$$

$$(4) \overline{E} \underline{E} \underline{K}$$

$$h_{1} = \frac{2}{3} \frac{D_{1} - 1}{D_{1}}$$

$$h_{2} = \frac{D_{2} - 1}{D_{1}}$$

$$h_{3} = \frac{D_{1}^{w} f}{D_{1}}$$

$$h_{4} = \frac{2(D_{2} - 2D_{2}D_{2}^{w} f)}{3D_{1}}$$

$$h_{5} = \frac{2(D_{3} - 2D_{3}D_{3}^{w} f)}{3D_{1}}$$

$$h_{6} = \frac{2(D_{2} - 2D_{2}D_{2}^{w} f)}{3D_{1}}$$

$$h_{7} = \frac{2(3 - 2D_{3} + 4D_{3}D_{3}^{w} f)}{3D_{1}}$$

$$h_{8} = \frac{1 - D_{2} + 1.5D_{2}D_{2}^{w} f}{D_{1}}$$

$$h_{9} = \frac{1 - D_{3} + 1.5D_{3}D_{3}^{w} f}{D_{1}}$$

$$h_{q_{1}} = -\frac{1}{D_{q_{q}}}$$

$$h_{q_{2}} = \frac{D_{2q} - 1}{D_{1q}}$$

$$h_{q_{4}} = \frac{1 - D_{3q} + D_{3q}D_{3}^{w} f}{D_{1q}}$$

$$(C4)$$

 $(D_1, D_2, D_3, D_1^w, D_2^w, D_3^w) = (1.8, 0.6, 0.5, 0.5, 0.3, -)$ $(D_{1q}, D_{2q}, D_{3q}, D_{1q}^w, D_{2q}^w, D_{3q}^w) = (3.0, 0.4, 0.33, 0.75, -, -)$ $(D_L, D_R) = (2.5, 1.6)$ $(C_{Dk}, C_{De}) = (0.2, 0.15)$ (C5)

D.乱流シアーと浮力生成 $P = -\overline{uw}\frac{\partial U}{\partial z} - \overline{vw}\frac{\partial V}{\partial z}$ (D1) G = bgwq (D2)

$$R_f = -\frac{G}{P} \tag{D3}$$

参考文献

- Y. Mahrer and R. A. Pielke, "Numerical simulation of the airflow over Barbados", Mon. Wea. Rev. (1976), 104, 1392-1402.
- (2) J. J. O'Brien, "A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer", J. Atmos. Sci. (1970), 27, 1213-1215.
- (3) B. E. Launder, G. J. Reece and W. Rodi, "Progress in the development of a Reynolds - stress turbulence closure", J. Fluid Mech. (1975), 68, part 3, 537-566.
- (4) G. L. Mellor and T. Yamada, "A hierarchy of turbulence closure models for planetary boundary layers", J. Atmos. Sci. (1974), 31, 1791-1806.
- (5) G. L. Mellor and T. Yamada, "Development of a turbulence closure model for geophysical fluid problems", Rev. Geophys. Space Phys. (1982), 20, 851-875.
- (6) 高木ら, "広域環境予測シミュレーションの研究", 鹿島技術研究所年報(1998), 46, 177-182.
- (7) R. H. Clarke, A. J. Dyer, R. R. Brok, D. G. Reid and A. J. Troup, "The Wangara experiment: boundary layer

data", CSIRO, Melbourne (1971), 3-21.

- (8) A. K. Blackadar, "Boundary layer wind maxima and their significance for the growth of nocturnal inversions", Bull. Amer. Meteor. Soc. (1957), 38, 283-290.
- (9) M. M. Gibson and B. E. Launder, "Ground effects on pressure fluctuations in the atmospheric boundary layer", J. Fluid Mech. (1978), 86, 3, 491-511.
- (10)B. E. Launder, "On the computation of convective heat transfer in complex turbulent flows", Trans. ASME (1988), 110, 1112-1128.
- (11)W. Rodi, "A new algebraic relation for calculating the Reynolds stresses", ZAMM (1976), 56, T219-T221.
- (12)T. Yamada and G. L. Mellor, "A simulation of the Wangara atmospheric boundary layer data", J. Atmos. Sci. (1975), 32, 2309-2329.