
Copyright © 2000 by JSCFD

第 1４回数値流体力学シンポジウム
E01-2

Treatment of Moving 3D Body on Cartesian Grid

Paulus Lahur, Graduate School of Engineering, Dept. of Aerospace Eng., E-mail: lahur@aero4.nuae.nagoya-u.ac.jp
Yoshiaki Nakamura, Dept. of Aerospace Eng., Nagoya University, E-mail: nakamura@nuae.nagoya-u.ac.jp
Furo-cho, Chikusa-ku, Nagoya 464-8603

Simulation of the flow around a moving body is a challenging problem, especially in 3D. The type of grid employed
can have a significant effect on computational efficiency. Body-fitted type of grids such as structured and tetrahedral-
based unstructured grids move with the body, so that global grid modification is necessary during the movement. On
the other hand, non-body-fitted type of grids such as Cartesian stay stationary while the body moves across it. As a
result, it requires only local modification in the vicinity of body surface, which saves significant computational effort.
This paper discusses the method proposed in the presently on-going research to treat moving body problem. The
current approach seems to offer a significant improvement over an existing method.

1. Introduction
Cartesian grids have been used to treat increasingly complicated
geometry in 3D flow problems. So far various methods have been
proposed to extend the capability of the grid to perform more
realistic flow simulation. These methods make use of Cartesian
grid properties that offer advantage over other types of grids. One
challenging frontier to Cartesian grid researches is flow simulation
around a moving body. Cartesian grid remains stationary as the
body moves across it, so that only local grid information around
the body surface needs to be recomputed, whereas the rest of the
grid is left untouched. To the contrary, in body-fitted grids such as
structured and tetrahedral-based unstructured grids, modification
is required in a considerably larger grid region, and in some cases,
where the movement is large, global modification is necessary.
 Several studies have been carried out for 2D moving body by
Bayyuk et al.1 and Yang et al.2 Bayyuk et al. proposed and
successfully demonstrated that merging the cells intersected by
body surface can eliminate the problems of appearing and
disappearing cells due to body movement.
 A Cartesian grid method for the moving 3D body problem is
attempted in the present research, as an extension of our previous
researches regarding Cartesian grid for stationary 3D body.2
Important issues of the method are discussed in this paper.

2. Computational Scheme
The flow computation is based on Euler equations, which can be
written as follows.

 ∫∫ =•+Ω
∂
∂ 0dSn̂FdU
t

rr (1)

where U
r

 is the state vector, F
r

 the flux tensor, Ω the cell
volume, n̂ the surface normal vector, and S the surface area.
 The discretized form of the equations takes into account the
change of cell volume in time, as shown in Eq. (2). Thus, for
example, the conserved variable is the mass instead of the density.

 () () ()∑
=

+
•−=

∆
Ω−Ω m

1k

n
k

n1n
Sn̂F

t
UU r
rr

(2)

where t∆ is the time step. Superscripts n and n+1 indicate the
time level. m is the total number of face in the cell under
consideration, k the face number, n̂ the face normal vector, and S
the face area.

A 3-stage Runge-Kutta method is employed to advance the
solution to the next time step. Flux computation on a cell surface
is based on Hännel flux vector splitting. The flow solution on each

side of the surface is extrapolated from the corresponding cell
center to the surface center in order to obtain second order spatial
accuracy. The solution gradient is computed using a least square
method. To retain the upwind property, the contribution of the
neighbor that shares the surface is not taken into account. A kind
of minmod limiter is then applied to the extrapolated values in
order to avoid numerical oscillation.

The maximum allowable time step is computed from the
maximum velocity of fluid flow and that of solid body.

() CV,Vmax

LCFLt
s

min
+

∆⋅=∆ rr
(3)

where minL∆ is the smallest length of free cells, or a fraction of

it, sV
r

the solid body velocity, and V
r

the flow velocity.
 The flux computation at solid interface also needs to be
modified to take into account the energy contribution due to body
movement in the direction normal to body surface (see Eq. (4)).

 ()()Tnsn VP00P0F =
r

(4)

3. Cut-Cell Merging
3.1 Treatment of Moving Body Problem
Due to body movement across stationary Cartesian grid, a cut cell
may “disappear”, or become completely inside the body. The
reverse is also possible, i.e., a cell inside body may “appear”, or
enter a fluid region outside the body. Since the cell inside body
has no volume and flow solution, direct application of Eq. (2) will
violate conservation, and will result in errors. Bayyuk et al.
suggested merging cut cells into their neighbors such that the
merged cells remains as cut cells during one time step.1 After the
step is completed, the cell is separated back to its constituent cells
(see Fig. (1)).

(a)

(b)

Fig. 1 Cell merging technique to treat:
(a) “disappearing” and (b) “appearing” cells.

merge cell move body separate cell body

Copyright © 2000 by JSCFD

 Note that the time step is limited by Eq. (3) so as to prevent a
solid cell from becoming a fluid cell in just one time step, and vice
versa, which will greatly simplifiy the algorithm, as shown in Fig.
(2).

Fig. 2 Possible cell transformation in one time step as a solid
body moves across a stationary Cartesian grid.

3.2 Implementation of Cut Cell Merging
The preceding discussion suggests the following computation
strategy:
(1) compute the total flux of all cells at time level n,
(2) merge cut cells,
(3) move the body to the next time level, n+1,
(4) compute the cell geometrical properties at time level n+1,
(5) compute flow solution at time level n+1,
(6) separate merged cut cells.
 Merging two cells can be carried out by two methods: (1)
removing the physical interface between the cells, or (2) by
summing the total flux and the volume of the two. As far as the
computational effort and results are concerned, there is no strong
reason to prefer one of the approaches. So, the latter approach is
taken because it's implementation is simpler in the present code.
 The next issue that has to be resolved regarding cell merging
is how to determine which cells to merge. This is a very important
issue in treatment of moving body in Cartesian grid, since the
procedure determines the effectiveness of the treatment. In the
current research, the following procedure is proposed:
(1) Cut cells at time level n are merged with neighboring cut cells

at time level n or n+1. Those neighbors are in the direction
perpendicular to the body surface inside the cut cells.

(2) Cut cells at time level n with volume less than a threshold are
to be merged with their neighboring fluid cells. The neighbor
is defined as in (1).

(3) Cut cells at time level n+1 that do not belong to any group for
merging are merged to neighboring cut cells at time level n.

The only requirement during the merging process is that the basic
shape of Cartesian cell is preserved. Thus, for example, when
there is a merging group with an L shape, another cell is included
into the group in order to satisfy the requirement. This type of
complication normally occurs in the region where the body
surface is diagonal to the Cartesian grid. In such case the merging
group includes typically four cells in 2D, although there are rare
occasions when the group includes nine cells. An illustration of
cell merging is shown in Fig. (3).

Fig. 3 Cell merging.

The cell-merging method proposed here has the following
advantageous features compared to the method described in [1]:
(1) Cell merging process can start from any cut cell on body

surface, whereas the method in [1] requires a suitable starting
point.

(2) Whereas the method in [1] traverses neighboring cut cells
along the body surface in a specified direction, so it is difficult
to extend its implementation to 3D. On the other hand, the
present method can proceed with no particular order, so it
allows direct extension to 3D geometry.

4. Data Structure
In the simulation of moving body, reducing the computation task
per time step is crucial, so that this becomes one of the main
arguments in choosing the type of data structure. In unstructured
approaches, cell connectivity is stored explicitly, so that finding a
neighboring cell is very simple and fast. By contrast, in tree-based
approaches, it is obtained by traversing up and down the tree.
Although the latter approach takes less storage, more computation
is required. Thus, an unstructured approach is adopted in the
present research.
 However, the current implementation of the method has not
yet fully exploited the advantage of unstructured approach,
namely solution-based grid adaptation.

5. Test Cases
5.1 Moving Piston
This test case is intended to validate the 3D method in 1D
computation. The test is adapted from the Sod’s test problem for
shock tube, whose length is 20 m, and is coarsely discretized into
50 cells. The stationary fluid inside the tube is initially separated
in the middle. On the left side the density is 1 kg/m3 and the
pressure is 100 kPa, while on the right side the density is 0.125
kg/m3 and the pressure is 10 kPa. The resulting distributions of
pressure, density, and velocity at t=0.01 second are shown in Fig.
(4). Comparison with the analytical (exact) results show that the
basic computational scheme is capable of capturing the flow
features such as shock, expansion, and contact discontinuity.
 For the piston case, the left half of the fluid is replaced with a
solid piston moving to the right at the same speed as the contact of
discontinuity in the Sod's test problem. It is shown in Fig. (4) that
the results are quite close. The only significant difference is in the
contact discontinuity; that is, in the Sod's test problem the result
appears to be smeared. This is understandable, because the contact
discontinuity is computed in Sod's test case, whereas in the piston
case it is imposed as boundary condition.
 The results of the piston case mentioned above are also
compared with the case where the piston is stationary and the fluid
flows toward the piston with the same velocity (see Fig. (5)). The
shock in the case of moving piston is slightly more smeared than
that of stationary piston, which seems to be due to the effect of
cell merging.

5.2 Moving Cylinder
Cylinder is used to test the 3D algorithm outlined above in 2D
flow. Two cases are computed and compared: (1) moving cylinder
in stationary fluid, and (2) stationary cylinder in moving fluid (see
Fig. 6). The relative velocity between the fluid and the cylinder is
M=3. A uniform Cartesian grid is employed, with the length of
cell equals the cylinder diameter divided by 32.
 The distributions of pressure, density, and velocity at t=2 are
shown in Figs. (8) and (9). It is found that both cases give quite
similar results. Note that the velocity distribution shows the
absolute fluid velocity, so the magnitudes of the distribution are
different.
 As in the piston case, the shock for the case of moving
cylinder is more smeared than that for the stationary cylinder.

fluid cell cut cell solid cell

illegal transformation

legal transformation

body surface at
time level n

body surface at
time level n+1

merging group

Copyright © 2000 by JSCFD

6. Concluding Remarks
A new cell merging method to treat moving body in Cartesian grid
has been proposed. The existing method merge cells by starting
from a suitable point on body surface and traverse its neighboring
cut cells along the body surface. On the other hand, with the
present method, cell merging starts from and progresses to any cut
cell on body surface. This flexibility is considered to be important
in extending the treatment to 3D body.

From the results in treatment of moving piston and cylinder, it
is found that the cell merging method proposed here is effective.

0

20000

40000

60000

80000

100000

120000

-10 -5 0 5 10
X (m)

Pr
es

su
re

 (P
a)

exact
Sod
piston

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10
X (m)

D
en

si
ty

 (k
g/

m
^3

)

exact
Sod
piston

0

50

100

150

200

250

300

350

-10 -5 0 5 10
X (m)

Ve
lo

ci
ty

 (m
/s

)

exact
Sod
piston

Fig. 4 Comparison between piston and the computational results
of Sod's test problem.

References
(1) Bayyuk, S.A., Powell, K.G., and van Leer, B., “A Simulation

Technique for 2-D Unsteady Inviscid Flows around
Arbitrarily Moving and Deforming Bodies of Arbitrary
Geometry,” AIAA-93-2291-CP, 1993.

(2) Yang, G., Causon, D.M., and Ingram, D.M., “Cartesian Cut-
Cell Method for Axisymmetric Separating Body Flows,”
AIAA Journal, Vol. 37, No. 8, August 1999.

(3) Lahur, P.R. and Nakamura, Y., “Anisotropic Cartesian Grid
Generation,” AIAA 2000-2243, 2000.

0

20000

40000

60000

80000

100000

120000

-10 -5 0 5 10
X (m)

Pr
es

su
re

 (P
a)

exact
moving
stationary

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10
X (m)

D
en

si
ty

 (k
g/

m
^3

)

exact
moving
stationary

0

50

100

150

200

250

300

350

-10 -5 0 5 10
X (m)

Ve
lo

ci
ty

 (m
/s

)

exact
moving
stationary

Fig. 5 Comparison between moving piston in stationary fluid
and stationary piston in moving fluid.

Copyright © 2000 by JSCFD

(a) (b)

Fig. 6 Two cases of identical relative motion:
(a) moving cylinder in stationary fluid, and

(b) stationary cylinder in moving fluid.

(a) Pressure

(b) Density

(c) Mach number

Fig. 8 Flow moving at M=3 to the right around stationary
cylinder.

Fig. 7 Uniform Cartesian grid for the cylinder case.

(a) Pressure

(b) Density

(c) Mach Number

Fig. 9 Flow due to cylinder moving at M=3 to the left in
stationary fluid.

