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Recently proposed Artificial Wind concept allows to construct simple and efficient upwind schemes. Here we
consider a new class of shock capturing numerical schemes using the Artificial Wind as a building block. These
new schemes compute the numerical flux as an exact function of some hydrodynamic state (“Upwind State at the
Face” — USF), which may be found using some upwind procedure. The Godunov scheme represents a particular
case of the USF schemes. This approach helps to find some new schemes which are rather simple and, on the

other hand, ensure high quality results.

1. Introduction

Among the high quality numerical schemes for CFD
the Godunov scheme is one of the most popular algo-
rithms [1]. It is based on the exact solution of the Rie-
mann problem (or, in other words, on an exact Rie-
mann Solver) and has an important property not to de-
crease the entropy. The generalizations of this scheme
(Godunov-type schemes) were naturally defined (see [1])
as the schemes using approximate Riemann solvers in-
creasing the entropy.

We choose a new principle to generalize the Godunov
scheme and consider the schemes in which, first, the
numerical flux is calculated as the exact hydrodynamic
flux function F(Uysr) of some Upwinded State at the
Face (USF) and, second, this hydrodynamic state is con-
structed using some upwinding procedure. One partic-
ular case of such procedures coincides with the exact so-
lution of the Riemann problem. All other USF schemes
can hardly be interpreted as being based upon some
approximate solution of the Riemann problem because
such solution would be a manifold function of a spatial
coordinate.

Ag a building block for constructing USF schemes we
also use the recently proposed Artificial Wind (AW)
schemes [2-3]. Although the AW schemes have been
already published in detail we give below a brief review.
Then we elaborate the USF concept and show how the
Differential AW scheme can be coupled with an USF
scheme.

2. Artificial Wind scheme

We paid attention to and used the following fact: the
“technological complexity” of the upwinding problem
is not Galilean invariant while the hydrodynamic equa-
tions are certainly Galilean invariant. That is why it
is always possible to choose a frame of reference which
moves with a velocity D with respect to the original
frame of reference in such a way that all the flow under
consideration becomes supersonic in the new frame. An
additional velocity —D is added to the velocity of the
flow in the moving frame of reference making the flow
to be supersonic. We refer to this velocity as an Artifi-
cial Wind (AW) velocity in order to emphasize that its
value is a matter of our choice and that it is introduced
to facilitate upwinding. The problem of upwinding be-
comes trivial in the moving frame of reference because
in supersonic flows all perturbations propagate along
one definite direction depending upon the direction of
the AW velocity. The procedure for ”remapping” of nu-
merical solution from the moving frame of reference to
the original one may be arranged by several ways [2-3].

Instead of using a moving frame of reference, one may
consider a spatial-temporal invariance of an arbitrary
hyperbolic system gU /0t + JF /0x = 0, where U is the
vector of conserved variables, F is the vector of their
fluxes, ¢t — time and z — a spatial coordinate. The equa-
tions are obviously invariant with respect to the trans-
formation of time and space t' = ¢, 2’ = x — Dt as long
as the flux and the Jacobian matrix A = JF/9U are
also transformed as follows:

F =F-DU, A' =A - DE. (1)

Thus, all perturbations may be converted into those
moving in the positive direction of z-axis (all eigenvalues
of the Jacobian matrix become positive) or into those
moving in the negative direction of z-axis (if all eigen-
values of the Jacobian matrix become negative) using
solely the transformation (1) (the AW transformation).

This idea may be applied for constructing the first
order numerical flux F;_; /5 via a face between two con-
trol volumes considering one-dimensional Euler equa-
tions at equally spaced (Az) grid as the simplest ex-
ample. The values of the conserved variables, averaged
over two adjacent control volumes are U;_; and U;. In
order to decrease the numerical dissipation we should
not limit AW velocities by the values based on the av-
eraged conserved variables . We propose to assign them
separately for each of the intermediate states between
U;_1 and U; which may be obtained using linear in-
terpolation with the weight coefficient £ (0 < & < 1):
U, U;_1,U;) = (1-¢)-U;_; +£-U;. When integrat-
ing the Jacobian matrix A over the intermediate states
we apply the AW transformation for the Jacobian under
integration and obtain:

Fi—Fi_s = / (A(T(©)-D(EE)dex (Ui-Us_y) (2)

as long as the following condition is satisfied:
fol D(¢)d¢ = 0. Now we choose the velocities of the
Differential AW in the following way: D(¢) = DE(¢) >
max(0,v(§) +¢(€)), for € € (0,¢*) and D(§) = D*(€) <
min(0,v(€) — ¢(€)) for € € (€*,1). As a result the in-

tegration in Eq.(2) between the limits 0 to £* becomes
a sum of perturbations propagating to the left, because
A(U(8) — D(€)E has only negative eigenvalues. Then
for the remaining part of the interval £ € (£*,1) the

integral becomes a sum of perturbations propagating
to the right. The flux difference F(U;) — F(U;_1) is
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thus splitted and the problem of upwinding is solved.
Constructing the numerical first order upwind flux in a
usual manner and calculating the integral in Eq.(2) one
can get a very simple flux formula:

Fic1/p =F('U;i+(1-£")U;1) +d- (Ui = Uy) (3)

where the diffusion coefficient is d = fog* DR(¢)de =
- f;* DY (¢)d¢. The velocities DR(¢) and DY (¢) may

be taken to be equal to their limiting values (see in-
equalities above). Iteration procedure for easily finding
the values of £* and d was described in [3].

3. Upwinded State at the Face

To investigate the relationship between the Godunov
and Differential AW schemes we propose to consider a
new class of upwind schemes with the numerical flux be-
ing the ezact flux function F(U gp) of some Upwinded
State at the Face (USF) which is constructed using some
appropriate upwinding procedure.

For the Godunov scheme the numerical flux may be
also written as the flux function of an USF:

Fi—1/2: F(URS(Oan_pUi)) (4)

where Ugg(z/t,Ur,Ug) is the solution of the Rie-
mann problem for the step-like initial condition (¢ = 0):
U,z) = Uy, 2 < 0; U0,z) = Ug, x > 0. The
upwind property of the USF Ugg(0,U,_;,U,) may be
illustrated by the fact that all physical perturbations in
the exact RS have the velocities of propagation which
are directed out of the face. To the contrary, the prop-
erty of the numerical flux to be an exact flux function
of some USF is not pertinent to Godunov-type schemes
with approximate Riemann solvers [1,4,5].

Now let us discuss general features of the numerical
schemes, for which the numerical flux is an exact flux
function of an USF:

Fi_1/2 = F(Uusr(Ui-1,U;)). (5)

The USF is proposed to be constructed according to
the following rules. The flux difference F;_; /5 —F;_; is

assumed to be representable as a (finite or infinite) sum
of physical perturbations propagating to the left:

J
F(Uysr) —F(Ui_1) = Y _(F(UYY) —F(UD)), (6)

Jj=1

UM =U;_, UV = Uygp.

In the same way, the flux difference F(U;) — F(Uysr)
should be represented as the sum of physical pertur-
bations propagating to the right. For a linear hyper-
bolic system of equations (F = AU, A being the con-

stant matrix) the flux differences F(U(j+1)) - F(UW)
are the amplitudes of the linear eigenmodes propagat-
ing to the left, the states U) being the constant states
between the fronts of eigenwaves. The numerical flux
F(Upysr(U;_1,U;)) coincides with that of the upwind
scheme for the linear system.

For a non-linear system the velocity of perturba-
tions may be introduced in the following way. First,
for inﬁnitesimal perturbations, i.e. when the differ-
ence F(UYY) — F(UWY) in the Eq.(6) is infinitely
small, it may be represented as F(UUT)) - F(UW) »
AU U, qui) = UGH) — UG, where A =
JF/0U is the Jacobian of a non-linear system. The

flux difference may be associated with the physical per-

turbation propagating to the left if JU() is an arbitrary
infinitesimal linear combination of only those eigenvec-

tors (normal modes) of the Jacobian A(U(])) which
correspond to the non-positive eigenvalues (velocities of
normal modes). With this requirement and with an
obvious transition from finite sums to integration we
find that the sums in the Egs.(6) may involve an inte-
gral over a path in a space of the conserved variables
J A(U)dU with the following restriction on the inte-
gration path: the vector dU is a linear combination of
the eigenvectors of the Jacobian A (U) corresponding to
non-positive eigenvalues (the Left-Perturbation path or
LP-path). If the vector dU is a linear combination of
the eigenvectors of the Jacobian A (U) corresponding to
non-negative eigenvalues the path is referred to as the
RP-path (the Right-Perturbation path), respectively.
The velocity of a finite amplitude perturbation may
be correctly defined if and only if it is a physical
discontinuity satisfying the Rankine-Hugoniot relation

F(UUY) - F(UW) = AU+ - g),
So, finally the Eq.(6) may be written as

Uyusr
F(Upsr) - F(Ui,) = /U U Amau )

where the integration path is piecewise continuous. All
the continuous parts should be LP-paths, and integra-
tion there is treated in a usual sense. Discontinious
parts in the integration path are acceptable only if the
Rankine-Hugoniot relations are fulfilled across such dis-
continuities, the value of A being non-positive and the
integral at this jump is treated in a sense of the follow-
ing substitution: dU — UUTD —UW), A 5AE, where
E is the unit matrix.

On the other hand, the difference F(U;) —

F(Uysr(U;_1,U;)) may be represented as follows:

Uit
F(U;) - F(Upsr) = / AWAU  (8)

Uusr

with piece-wise continuous integration path with all
continuous pieces being RP-paths while each discon-
tinuitity satisfies the Rankine-Hugoniot relations with
non-negative propagation velocities.

Let us introduce an additional requirement that all
continuous parts of the LP- and RP-paths are simple
(Riemann) waves. These exact non-linear solutions are
usually rather simple and the propagation velocity for
them may be readily computed. Now one can define
the USF Uygsr(U;_1,U;) as such set of the conserved
variables that the integration paths in Eqs.(7,8) do ex-
ist and satisfy the requirements specified above. Let
us emphasize that no integration is actually to be per-
formed. It is sufficient to connect the left and right
states U;_1, U; by a piece-wise continuous path fol-
lowing some procedure, find the point Uy gr(U;—1, U;)
(which separates the perturbations propagating to the
left and to the right) at this path, and then compute
the flux Eq.(5).

For example, in the Godunov scheme the (unique)
path is specified by the only additional requirement: the
velocity of propagation )\ insreases monotonically along
the path from U;_; to U;. As a consequence, the con-
served variables may be represented as the functions of
A. This dependence is in fact the Riemann Solver (RS).

Without the requirement for the propagation velocity
to be monotone, the integration path is not unique. For
a perfect gas with a constant polytropic index another
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integration path may be easily constructed, consisting
of the right simple wave passing through the state U,
the left simple wave passing through the state U;_; as
well as the contact discontinuity connecting some pair
of states at these simple waves. Such integration path is
introduced in the Osher scheme [5]'. The computation
of USF is easy, no iteration procedure is required. Due
to non-monotone character of the propagation velocity
in simple compression waves the path can not always be
splitted into LP-path and RP-path: this is impossible if
the compression simple wave(s) involves a sonic point.
This obstacle can be readily overcome by means of sub-
stituting the compression wave with a sonic point by a
combination of a stationary shock wave followed by a
simple compression wave.

The procedure to construct the path is straightfor-
ward. For a right simple wave passing through the
state U; the dependence of pressure from velocity is
found. The analogous dependence is also found for the
left simple wave passing through the state U;_;. The
dependencies obtained are matched using the condition
for pressure p, and velocity v, to be continuous at the
contact discontinuity. For a perfect gas with a constant
polytropic index the equation for v, is linear and may
be easily solved. If any of the simple waves appears to
be a compression wave involving a sonic point (rather
rare situation), a standing shock wave(s) is introduced
and the path construction is repeated. Procedure for
finding USF is easy and, for a gas, reduces to solving
only simple linear equations even for strongly non-linear
waves.

The test results and theoretical considerations for the
latter USF scheme show that for CFL numbers close
to 1 the positivity of the entropy production is ensured
only if the simple compression waves are not too strong,
namely:

Vi1 — €i—1 < Ve < U; + G 9

One can readily see that the condition Eq.(9) may be in-
valid if the amplitude of the simple compression wave is
large enough. We think that this condition is of rather
general nature and the rejection of the monotone ve-
locity principle (as in the RS) and the introduction of
simple compression waves may only be considered at
the cost of the requirement that the amplitudes of these
coinpression waves should be restricted by some finite
value.

4. USF+AW schemes

Now we show how to incorporate AW into an USF
scheme. The simplest way to do it is to assign any state
Ug’S)F of LP-path as the left state for differential AW
scheme, and any state of RP-path as the right state for
differential AW scheme. Combining the Eqgs.(2,7,8) one
can get a general formula as follows:

v,
F(U;) - F(U,_,) = / A(U)dU+
U1

+ / (A(T(E) - DEOE)EUR, —UH,+ (10)

+ / U AU

()
UUSF

that is the upwinding is ensured by a proper choice of
an integration path for the first and last integrals and
by thef introduction of Artificial Wind for the central
one. of it

In fact, the reverse order of simple waves was used in the orig-
inal Osher-Chakravarthy scheme but the way described here is also
mentioned in [5].

Finally, the numerical flux is as follows:
Five =FEUgde + 1 -€)UGE+ (1)
+d (Ude — Uyde)

In a particular case of U%RS)F =U; and Ug“S)F =U;1
we return to the Diffrential AW scheme, in the oppo-

site case UijS)F = Ug“S)F = Uysr — to an USF scheme.

Both AW and USF schemes get some advantage out
of their combination. Confronting to the Diffrential
AW scheme, the numerical dissipation in Eq.(11) may
be considerably lower as long as the states U%RS)F and
Ug’S)F are closer to each other as compared to U; and
U;_1. As compared to an USF scheme, the use of the
Eq.(11) allows to ensure any given restriction for an am-
plitudes of the simple waves, e.g. one can use a simple
(for example, linear) solver for smooth numerical so-
lutions as well as reasonable numerical dissipation for
large gradients which is a little bit lower as compared
to the pure AW scheme.

As a practical example for a test simulation we have
employed an USF scheme with non-linear simple waves
(both compression and rarefaction ones) for a gas with
a constant polytropic index (y = 7/5), in the way as
discussed above. The AW is introduced only in case the

condition Eq.(9) is not hold between the states Ug’S)F

and U§]R5) 7 €ach of them satisfying the condition Eq.(9).
To extend the scheme up to the second order of accu-
racy, we insert the first order solver into the Rodionov
scheme [6], using the interpolation over primitive vari-
ables and g - limiter [5] with 8 = 1.6.

The simulation results for the Woodward-Collela test
problem [7] is presented in Fig.l with the results for
the Rodionov scheme (a second order extension of the
Godunov scheme with an exact Riemann solver) given
for a comparison. CFL number is equal to 0.8 for both
simulations. It is clearly seen that the results are at
least of the same quality as that of the Rodionov scheme
involving an exact Riemann solver.

5. Conclusion

The recently proposed AW schemes give good numer-
ical results as applied for hydrodynamic problem with
complex physics. It is closely related to another new
class of numerical schemes, namely, the USF schemes
discussed in detail in the present paper.

The high quality test results show that the coupling of
the AW scheme and the newly proposed USF approach
seems to be very promising. Using such a coupling we
may have an opportunity to take advantage of it, for in-
stance, giving "priority” to the USF or AW parts of the
combined scheme depending upon local characteristics
of the solution (smooth solution or a discontinuity).
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