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Conservative and oscillation-less Semi-Lagrangian Schemes
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Abstract: A type of semi-Lagrangian schemes was proposed Lo compute conservative transportation equation. The
miass conservation and oscillation-suppressing properties are enforced by imposing proper constraining conditions to
the reconstruction of interpolation function. Excellent numerical results were achieved for both linear and non-linear

scalar conservation laws.

LIntreduction

Semi-Lagrangian methods that conserve exactly the transported
physical field have been recently developed in [1,2] by using the
CIP (Constrained Interpolation Profile) concept.

In this paper, we propose another class of schemes called
CIP-CSL3 (Constrained Interpolation Profile - Conservative
Semi-Lagrangian scheme with 3rd-order polynomial function).
The CIP-CLS3 schemes are constructed from a cubic polynomial.
In addition to the conservation constraint used in the CIP-CSL2 ,
the slope (first-order derivative) of the interpolation function at the
middle point of a mesh cell is also introduced as another constraint
on the interpolation function. The slope at the cell center can be
easily approximated from a reconstruction procedure and allows
manipulations, ie. slope limiters, to make the interpolation
oscillation-less.

1. The schemes

The model equation to be considered is a transportation equat-
ion in one dimension
- L A (1)
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where t refers to the time, x the spatial coordinate, u the character-
istic speed and f the transported gquantity.

We make use of a piecewise cubic polynomial function F ().
As in the CIP-CSL2 method, a constraint for the conservation of
cell-integrated average is imposed as
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Another constrained condition for the interpolation construction
is imposed on the first-order derivative at the middle point of the
cell as
dF(x) _
_'%dtﬂ- =d; 172" (3}
Intermsof f* f° d7 . and pF,the cubic polynomial
F,(x) can be completely determined. The numerical solution of
f at time step & + 1is then updated via a semi-Lagrangian calcol-
ition.
The cell-integrated average p is advanced by the conservative
relation
P.r.;'.rl == =Bk (4)
vhere g, represents the flux across the cell boundary during Ar.
The slope of the interpolation function at the cell center 4" .
‘emains as a free parameter to be determined. It is this parameter
hat provides us a way to modify the interpolation function for
wppressing numerical oscillation. Follows are two examples fo
lefine a CIP-CSL3 type scheme using conventional slope limiters.

fhe CIP-CSL3_LINO scheme:
We call a scheme CIP-CSL3_UNQ if a UNO reconstruction[3]

15 used to evaluate the derivative d,
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The CIP-CSL3_CW scheme:
In this scheme we adopt the approximation suggested by
Colella and Woodward[4].

3. Numerical tests

We consider a one dimensional linear problem with an initial
square profile. The computed results after 1000 steps of the
CIP-CSL3_UNO and CIP-CSL3_CW are plotted in Fig.1. As
expected, constrained by the oscillation suppressing reconstnuc-
tions, both the schemes give well regulated and oscillation-less
solutions. All the schemes conserve exactly the total mass.
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Fig.1 A transporied square wave after 1000 step calculiations with the
CIP-C5L3_UNO scheme (l=ft) and the CIP-CSL3_CW scheme (right).

We also computed the inviscid Burger's equation. A complic-
ated initial condition same as that in [3] is specified.
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Fig.2 Solution of Burgers' equation a1 1=0.75 with an initial condition
given in |5]. Displayed are the resulis computed by the CIP-CSL3_UNO
scheme (left) and the CIP-CSL3_CW scheme (right),

The correct positions of the  two shocks are obtained. The
expansion waves are also accurately computed,
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