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  The interaction between impeller blades and diffuser vanes in a diffuser pump has been numerically simulated by using a direct vortex

method for off-design operating conditions. Biot-Savart law was used to calculate velocity without the necessity to grid large portions of the

flow field and the calculation points are concentrated in the regions where vorticity is present. Lagrangian representation of the evolving

vorticity field is employed because it is suited to the moving boundaries. The pressure distribution was estimated directly from the

instantaneous velocity and vorticity field with an integral pressure equation. The analysis of the simulation results and the comparison of

calculation results with experimental ones show the method used in this paper is a fit tool to simulated the unsteady rotor-stator interaction in

turbomachines.

1. Introduction

  Unsteady rotor-stator interaction is very important for the design and

operation of the turbomachines. Due to practical importance and the

inherent complexity of the interaction phenomena, a large number of

detailed experimental investigations and theoretical or numerical studies

have reported in the literature regarding this problem. As measured and

discussed by Dring et al.(1), the phenomenology of the rotor-stator dynamic

interaction takes place mainly through two distinct mechanisms: potential

and viscous interactions.

   The potential flow effect is induced by the interaction of cascades in

relative motion. These effects extend in both upstream and downstream

directions. The rate of decay of potential perturbation is fast and hence the

associated effect appears significant only in the case of small gaps between

rotor and stator.

   The viscous wake effect originates from the impingement and

convection of the wakes shed from the preceding blades in the relative

motion. When the impeller operates at off-design points, the flow

separation occurs and separation bubbles are formed on the suction side or

pressure side of the impeller blades for partial or exceeding discharge cases.

With the impeller revolution, the vortex bubbles move downstream with

the impeller blade wakes. Therefore, when a centrifugal impeller is

combined with its vaned diffuser and operates at off-designed conditions,

effects of the impeller on the diffuser will become more complicated and

the viscous effects come from the impeller wakes as well as the passage

vortices generated by impeller blades.

    Numerical simulations of rotor-stator interactions in centrifugal

turbomachines are complicated. The difficulties in simulating rotor-stator

interaction are mainly due to two aspects: one is the grid connectivity from

the rotary impeller to stationary diffuser, the other is the turbulent model. The

applicability of turbulent models in the separation calculation is debated due

to the effects of centrifugal force and Coriolis force on the flow field in the

impeller. Qin & Tsukamoto( 2 ) studied the unsteady flow in a diffuser pump

analytically using the singularity method. Daws(3) simulated the unsteady

interaction of a centrifugal impeller with its vaned diffuser using a k~å

turbulent model and a sliding surface to act as a transport internal boundary

between the rotating and stationary frames.

  Vortex methods have several merits, which may make them particularly

well suited for simulations of high-Reynolds number flows. The vortex

method based on the Biot-Savart law is a simple vortex method, which

reduces the need to grid large portions of the flow field and concentrates the

calculation points in the regions where vorticity is present. Lagrangian

representation of the vorticity movement is well suited to moving

boundaries.  Utilizing the advantages of the vortex methods, an advanced

scheme has been devised to simulate the unsteady impeller-diffuser

interaction in a diffuser pump(4) for the designed operation. In the present

paper, unsteady flow analysis will be extended to impeller-diffuser

interaction at off-design points for the same diffuser pump.

2. Numerical Methods

2.1 Governing Equations
 The two-dimensional incompressible unsteady flow of a viscous fluid may

be determined by the vorticity transport equation as

  2ωνω
ω

∇=∇⋅+
∂
∂

v
t

,                            (1)

where the vorticity is defined as

             v×∇=ω .                                (2)

  Equations (1) and (2) are the governing equations of the vortex methods.

Using the definition of vorticity and continuity )0( =⋅∇ v , it can be shown

that v  is related to ω  by the following Poisson equation:
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           ω×−∇=∇ v2 .                              (3)

This equation shows that the velocity field can be determined by the vorticity

field.

2.2 Vortex Method
  The present numerical method is based on the discretization of the above

equations in a Lagrangian form using vortex methods. Velocity field is

determined by the following Biot-Savart law,
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where R=r-r0, R=|R|, subscript [o] denotes a variable, differential or integral

at location ro, r is an arbitrary location in the flow field. The first term in the

right side represents the velocity induced by the vorticity existing in the flow

field and the second term contains the contribution from the solid-body

movement and the infinity velocity. The use of equation (4) to compute the

velocity field guarantees the satisfaction of the boundary condition at infinity.

  On the other hand, the vorticity transport equation (1) can be expressed in

a Lagrangian formulation. Each discrete vortex follows the flow like a

particle so the motion of fluid particles is presented by a single differential

equation:

              v
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For the calculation, the second-order Adams-Bashforth method was used to

approximately compute the trajectory of the vortices. Another expression of

the vorticity equation can be given in the following Lagrangian form.
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The core-spreading method was utilized to consider effects of viscosity on

the discrete vortices in the calculation.

   Vorticity field near the solid surface must be correctly represented by

proper distributions of vorticity layers and discrete vortex elements in order

to satisfy the no-slip and no-flux conditions on the boundary surface. Details

of the procedure used to simulate the vorticity transport, development and

separation of the boundary layer near a solid boundary in this paper are

described by Zhu(5). For two-dimensional flow, the nascent vortices shed

from the boundary are transformed into discrete rectangular elements with

definite dimensions and uniform vorticity using this procedure. When these

rectangular vortices move farther than a certain distance from the boundary

surface, vortex blobs are used to replace the rectangular vortices. Conversely,

vortex blobs may approach the boundary surface and may even penetrate the

wall layer. In this method, their shape was retrained even as the blobs drew

near the boundary. However when they passed the boundary surface, we

could simply delete them.

2.3 Calculation of the Pressure
  From the Navier-Stokes equation, the following integral equation can be

obtained,
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where H  is the Bernoulli function and G  is the fundamental solution of

the scalar Laplace equation. The expressions for H  and G  are

respectively
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When the surface pressure is computed according to equation (7), the left-

hand side of the equation represents a matrix concerned with H . The right-

hand side accounts for the motion of the body and the field vorticity.

Solution of the above equation yields the Bernoulli function H . Velocity v
is usually known, so the pressure p can be easily calculated. With the results

of H on the surface, we can use equation (7) again to compute H for an

arbitrary location in the flow field where v  can be computed according to

the Biot-Savart law.

2.4 Application to Turbomachinery
  Equation (4) can be directly used to calculate the unsteady flow velocity

field induced by the impeller-diffuser interaction (figure 1). For the flow field

within the impeller, the relative velocity w  is usually used to analyze the

flow characteristics. We have the following velocity relationship among the

absolute velocity v , relative velocity w and rotary velocity u :

               uwv +=                               (10)

From equation (10), the following acceleration equation can be obtained.                                             
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  When equation (7) is used to calculate the pressure of the flow field

shown in figure 1, on the surface Sd of diffuser vanes and an infinite surface

S∞ the term ∂v/∂t is 0, whereas on the surface Si of impeller blades, we

should use the equation (11) to express the term ∂v/∂t. With substitution of

equation (11) into equation (7) , equation (7) can be rewritten as
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Where

               vu ⋅−= HH '                            (13)

In equation (12), the relative velocity w  is 0 on the surface Si, and the

absolute velocity v  on Sd and S∞, is 0. Consequently, if the location,

strength and velocity of the discrete vortices existing in the flow field are

calculated, the pressure distribution can be easily calculated for the whole

flow field.

       

3. Problem Statement

  The specifications of the pump are summarized in Table 1. According to

Table 1, the gap between the diffuser and the volute casing is so large that the

effects of the volute casing on the impeller-diffuser interaction is neglected

and so the calculated model is simplified as shown in figure 1. Some

representative stations are shown in figure 2 for a vaned diffuser passage.

The calculation stations are the same with the measurement stations(2). For
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the calculation, 50 vortex panels were distributed along the boundary surface

of each blade for the impeller and diffuser at a height h=4(voD2/ν)0.5, here vo

is the radial velocity at the entrance of the impeller, D2 is the outlet diameter

of the impeller and υ  is the kinematic viscosity. The size of the time step

was dt=T/150, where T is the period of impeller revolution. About 2~3

periods of impeller revolution are required to produce an acceptable

solution(4).

                                                                      
　    Figure 1 An impeller and its vaned diffuser

      Table 1  Specifications of the test pump

 Impeller:    Number of blades Ni=5

            Inlet diameter D1=132.25 mm

            Outlet diameter D2=250.00 mm

 Diffuser:    Number of vanes Nd=8

            Inlet diameter D3=258.00 mm

            Outlet diameter D4=325.00 mm

 Rating:     Flow rate Qr=6.21 m3/min

            Total headrise Hr=29.2 m

            Rotational speed 2066=N rpm

                        

　　 Figure 2 Representative stations for a passage in the diffuser

4. Results and Discussions

4.1 Unsteady Velocity Field
  Besides the designed condition, we have also calculated the off-design

operation conditions for Q/Qr=0.4, 0.6, 0.8, and 2.1 . When the impeller

operates at off-design points, separation will occur on the impeller blades

with the flow impingement. The instantaneous vortex flow patterns for

partial discharge case Q/Qr=0.6, 1.0 and 1.2 are represented in figure 3, here

Ti is the one-blade passing time. In figure 3, the blue points represent the

discrete vortices with positive vorticity (counter-clockwise vorticity) and the

red ones represent the discrete vortices with minus vorticity (clockwise

vorticity). These figures represent the interaction of the inviscid flow field

generated by the impeller and diffuser in relative motion and the transport of

separation vortices with blade wakes from upstream impeller blades.

  For partial discharge case Q/Qr=0.6, in the suction side of the impeller

blades, large-scale vortex bubbles are formed. On the other hand, for

exceeding flow discharge Q/Qr=1.2, the separation vortex bubbles are

formed along the pressure side of the impeller blades. Both for Q/Qr=0.6 and

Q/Qr=1.2, the differences in the size and shape of the separation bubbles can

be found, which are possibly caused by the unsymmetry of the diffuser

vanes to the impeller blades. With the impeller revolution, these strong

vortices will be transferred into the diffuser with the blade wakes.

  Therefore when a centrifugal impeller is combined with its vaned

diffuser and operates at off-design points, effects of the impeller on the

diffuser become more complicated and the viscous effects include the

impeller wakes as well as the passage vortices generated by flow separation

around the impeller blades. With time marching, these vortices will be

decayed by fluid viscosity and turbulence. Effects of the differential

connective velocity in the vane-to-vane passage are also clearly evident from

the vortex traces. The vortices on the suction side of the diffuser vanes travel

much faster than the vortices on the pressure side, being distorted and

elongated.

4.2 Unsteady Pressure
  Figure 4 shows the instantaneous static pressure distributions

corresponding to the flow patterns shown in figure 3. Both for partial

discharge case Q/Qr=0.6 and exceeding discharge case Q/Qr=1.2, pressure of

the flow separation zones is very low in the impeller and the instantaneous

pressure distribution is clearly unsymmetrical both in the impeller and

diffuser. As the impeller rotates, significant variations occur in the static

pressure at the diffuser inlet.

  The dependence of the pressure fluctuations on the flow discharge in the

diffuser is presented in figure 5. We show the pressure fluctuations at taps

(r1,c3), (r3,c3) and (r5,c3) (figure 2) in figure 5. For each tap, the pressure

increases as the discharge decreases. At the same time, as the discharge drifts

off the designed point, with the occurrence of separation, the effects of the

viscosity increase according to the fluctuations of unsteady pressure.

  Figure 6 presents the distribution of the magnitude ∆Cp for unsteady

pressure fluctuations at the diffuser inlet from (r1,c1) to (r1,c5) (figure 2) for

different flow discharges, here ∆Cp is the peak-to-peak value of the unsteady

pressure. Both calculated and measured results show the same tendency that

the magnitude　∆Cp of unsteady pressure increases with the increasing flow
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discharge Q in the case of Q/Qr>0.8. The measured ∆Cp is the smallest near

Q/Qr=0.6 and it increases with decreasing flow discharge Q in the case of

Q/Qr<0.6. For the calculated results, ∆Cp is the smallest near Q/Qr=0.8 and

it increases with flow discharge decreasing in the case of Q/Qr<0.8.

5. Conclusions

  In this study, the unsteady interaction of a centrifugal impeller with its

vaned diffuser has been investigated for the off-design operation conditions.

The instantaneous flow patterns show that the whole flow characteristics

induced by rotor-stator interaction operating at off-design conditions can be

caught by using the vortex method of this paper. A quantitative agreement

has been achieved in the unsteady pressure calculation for the diffuser inlet

compared with the experimental results. Both calculated and measured

pressures show that there is a flow discharge, at which the magnitude of

unsteady pressure is the smallest.

   The unsteady rotor-stator interaction in turbomachines is a complicated

flow phenomenon, especially for off-design operations. The results of the

present study confirm that the advanced vortex method used in this paper is

applicable for investigating the unsteady interaction of a rotating impeller

with a stationary diffuser in turbomachinery, even for the off-design

operation conditions. In order to achieve the quantitative analyses through

numerical simulation, the high-resolution vortex methods are needed to give

much accurate results.
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                             (1) t/Ti=0                                                           (2) t/Ti=1/2

                                                (a) Partial discharge Q/Qr=0.6

                          (1) t/Ti=0                                                           (2) t/Ti=1/2

                                                 (b) Design discharge Q/Qr=1.0

                            (1) t/Ti=0                                                         (2) t/Ti=1/2

                                                  (c) Exceeding discharge Q/Qr=1.2

                                        Figure 3 Flow patterns represented by discrete vortices
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                                                  (a) Partial discharge Q/Qr=0.6

                              (1) t/Ti=0                                                           (2) t/Ti=1/2

                                                  (b) Design discharge Q/Qr=1.0

                                                 (c) Exceeding discharge Q/Qr=1.2

                                              Figure 4 Contours of static pressure
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                        (a) (r1,c3)

                         (b) (r3,c3)

                        (c) (r5,c3)

   Figure 5 Variation of the static pressure with time at some taps

       Figure 6 Magnitude of the unsteady pressure at diffuser inlet


