数値流体力学シンポジウム

理化学研究所 生体力学シミュレーション研究プロジェクト

COMPUTATIONAL BIOMECHANICS

生体力学シミュレーション研究

HENIS

24, 25 May, 2000

平成11年4月より5年計画 人体をコンピュータ内に再現 力学的なシミュレーションを行う

器官の損傷と治療、人体の運 動

循環器(血流)の3分野

器官の損傷と治療のシミュレー ションチーム

- 軟組織と硬組織のシミュレーション
- ・軟組織では眼球を対象として有限要素法モデ ルを構築して、現実に即した網膜剥離の手術 過程や、眼球の損傷過程のシミュレーションを 目指した研究を進めている。
- ・ 硬組織では、骨の再構築過程のシミュレーションをとりあげている。

豚眼のMRI画像

従来からの観察手法					
観察方法	分解能	観察原理	問題点		
M R * ^A	mm	試料の核磁気	分解能,高価		
超音波CT℉	mm	超音波の反射率	分解能		
X線CT [∗] ℃	mm	X 線透過率	分解能,被爆		
共焦点レーザー顕微鏡™	μm	試料中の蛍光	試料の透明度		
Visible Human Project ^{*E}	mm	連続切片作製	切片間の位置		

 BUT
 ・試料の色情報が得られない。*ABC

 (観察対象が 1つのみである)

 ・観察の分解能が低い*ABCE

 ・観察対象物の範囲が小さい*

 生態試料の内部情報のディジタイジングには不十分

3次元内部構造顕微鏡による生体試料のディジタイジング 特徴:試料内部の形状データの取得が可能 最小1μmの高精度ディジタイジングが可能 色情報の取得が可能

生体試料の3次元構造観察法

3次元内部構造顕微鏡(3D-ISM) とは?

- 生体試料を固定した後、実際にその試料の 上端を切断して、その断面画像を撮影する。
 その後切断したい量だけ試料を移動させる。
 この行程を繰り返すことにより、試料の内部 情報を得る観察システムである。
- 得られた内部情報を元に画像処理によりフ ルカラーの立体画像の構築が容易に可能で ある。

(1990年東京大学樋口教授提案)

大型試料観察装置(マクロ)

		・試料サイズ 最大:180×135×200mm 最小:15×12×100mm
		・試料温度: - 4 5 (凍結包埋可) ・試料送り:最小10µm 総送り量220mm 最大速度20mm/ s
MSS-225f	»	 ・試料切削用ナイフ:超硬合金製ナイフ ミクロトーム用ナイフ ・ナイフの回転数:30~90rpm
		・切函面銀ジ・NTSC-CCDカメフ 35mm銀塩カメラ(ペンタカム) ハイヒ`ジョンCCDカメラ ・断面記録:追記型NTSCレーサ`ーディスク 書換型NTSCレーサ`ーディスク
RIMEN スライス部の外観	-	道記型パビッコル-リーナ 1X9 35mm銀塩フィルム ・観察光源:白色光,蛍光(UV,B,G)

装置概要(マクロ)

試料送り量

指令値30μmで試料を押し上げた 際の試料上端の移動量を示す。 指令値とほぼ同じ試料送りを実現し ている。

実験方法

- 供試試料:
 - 豚眼
 - 新鮮豚眼を直ちにホルマリン、グルタールホルマリン溶液にて固定
 - ・固定1週間後PBSにて3日間洗浄
 - 眼球前房内に色素注入
 - •着色凍結包埋剤を用いて金型内にて-35 で凍結包埋
- 観察条件
 - 試料切削厚さ:30µm
 - ナイフ回転数:90rpm
 - 観察分解能: 127 µm
 - 切削用ナイフ: 超硬合金製ナイフ
 - 撮影断面数:900断面
 - 撮影時間:10分間

豚眼の断面画像

立体構築画像

抽出部位の計測

3次元内部構造顕微鏡によりディジタイズした情報はイメージ情報だけでなく、大きさの情報を有している。
 そこで、得られた情報より、表面積、体積を測定した。

眼球と各部位の計測結果

	体積(mm ³)	表面積(mm ²)
眼球全体	5,779	16,225
水晶体	248	4,537
角膜	169	4,537

VRMLファイル作成

- 得られた情報を元にVRMLファイル(ポリゴン形式)の作成 を行った。
 - 3次元内部構造顕微鏡を用いて取得した立体情報(AVS:fld データ)を元に色抽出して各部位ごとのデータを作成
 - 作成したデータを用い等値面を貼る(Isosurface)。
 - 等値面の情報をVRML形式に変換

眼球のVRMLファイル

角膜のVRMLファイル

非圧縮性超弾性FEMの定式化 固体一液体連成解析の定式化

非圧縮性超弾性FEMの定式

<u>非圧縮性超弾性体のひずみエネルギー関数:</u>

$$W = W(\bar{I_1}, \bar{I_2}) \tag{1}$$

<u>非圧縮性条件</u>:

$$J = 1 \qquad or \qquad I_3 = 1 \tag{2}$$

<u>非圧縮性超弾性体の全ポテンシャルエネルギー汎</u>関数: = $\int_{V0} (W(I_1, I_2) + 2I(J-1)) dV - g(u)$ ⁽³⁾

 I_{I_1}, I_{I_2} :右Cauch-Green 変形テンソルの第一と第二の低減不変量 J: Jacobin マトリックス I: Lagrange 乗数 g(u):外力による仕事

非圧縮性超弾性FEMの定式

これに停留条件を適用すると:

$$dF = \int_{V0} \left(\frac{\partial W}{\partial \mathbf{e}_{ij}} + 2\mathbf{I} \left(\frac{\partial J}{\partial \mathbf{e}_{ij}} \right) \right) d\mathbf{e}_{ij} \, dV$$

+
$$\int_{V0} 2(J-1) d\mathbf{I} \, dV - g(du)$$

= 0 (4)

e_{ij} : Green-Lagrange ひずみ

<u>要素内部の任意点の変位とLagarange 乗数(</u>圧力):

 $u_i = \boldsymbol{f}_N u_{Ni} \qquad \boldsymbol{I} = \boldsymbol{j}_R \boldsymbol{I}_R \tag{5}$

N:要素の変位節点数, R:要素内部の圧力節点数

<u>要素の離散化方程式</u>:

$$\begin{bmatrix} \int_{V0} (\partial W / \partial \boldsymbol{e}_{ij} + 2\boldsymbol{I}(\partial J / \partial \boldsymbol{e}_{ij})) ((\partial \boldsymbol{f}_{M} / \partial X_{j}) \boldsymbol{u}_{Mn} + \boldsymbol{d}_{jn}) (\partial \boldsymbol{f}_{N} / \partial X_{i}) dV = r_{Nn} \\ \int_{V0} \boldsymbol{j}_{R} 2(J-1) dV = 0 \end{bmatrix}$$
(6)

r_{Nn}:式 (3)における外部仕事の等価的節点力

非圧縮性超弾性FEMの定式

(6) の非線型方程式をNewton-Raphson法を用いて解く:

Taylor 展開によって方程式 (6)を線形化すると一つの要素に関する剛性方程式:

$$\begin{bmatrix} \mathbf{k}_{1}^{i-1} & \mathbf{k}_{2}^{i-1} \\ \mathbf{k}_{3}^{i-1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{D} \mathbf{u}^{i} \\ \Delta \mathbf{I}^{i} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \mathbf{u}_{1}^{i-1} \\ \mathbf{f} \mathbf{I}_{2}^{i-1} \end{bmatrix} + \begin{bmatrix} \mathbf{r} \\ \mathbf{0} \end{bmatrix}$$
(7)

$$\underline{\underline{\mathbf{f}} \mathbf{k}_{3}^{i-1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{U}^{i} \\ \Delta \mathbf{I}^{i} \end{bmatrix} = \begin{bmatrix} \mathbf{F} \mathbf{U}_{1}^{i-1} \\ \mathbf{F} \mathbf{I}_{2}^{i-1} \end{bmatrix} + \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}$$
(8)

$$\mathbf{R} \quad \text{Seminishing the set of the set$$

 $i = i + \boldsymbol{w} \boldsymbol{D}^{i}$

 $\mathbf{w}: 0 \angle \mathbf{w} \angle 1$

プログラムの特徴

1.方法

- 固体:非圧縮性超弾性体 混合型有限要素法
 液体:静止液体
- 2.主な機能
 - 4/1, 8/1, 9/3 三つのタイプの混合型要素に対応
 - ◎ 変位、力、圧力の境界条件に対応
 - Mooney-Rivlin 材料モデルに対応(一般材料モデルに拡張可能)
 - 非圧縮性超弾性体と静止液体との連成解析

剛体工具との接触処理
 縫合のシミュレーション

4/1 8/1 9/3 ● 変位節点 E力節点

固体一液体連成解析の計算例(2)

非圧縮性超弾性FEMの定式化 固体一液体連成解析の定式化

固体一液体連成解析の定式化

<u>静止液体の場合の圧力変化と体積変化の関係</u>: $\Delta P = -K \frac{\Delta V}{V_0}$ (11)

DP: 圧力の変化, DV:体積の変化, V。初期体積, K:体積弾性係数。

<u>液体の体積</u>:

$$V_{seg}(u_{seg}) = \frac{1}{2}(x_{2} - x_{1})(y_{1} + y_{2})$$

$$V(u_{s_{p}}) = \sum V_{seg}(u_{seg})$$
(12)

<u>液体の体積の変化</u>: $DV(u_{s_p}) = V(u_{s_p}) - V_o$ (13)

固体一液体連成解析の定式化

<u>液体の圧力の変化</u>: $DP(u_{s_p}) = -K(\frac{V(u_{s_p})}{V} - 1)$ (14)<u>液体の圧力</u>: $P(u_{s_p}) = P_o - K(\frac{V(u_{s_p})}{V} - 1)$ (15)<u>等価節点力</u>: $\underline{\mathsf{R}}_{1} = \underline{\mathsf{R}}_{2} = \frac{1}{2} \cdot L(u_{seg}) \cdot P(u_{s_{p}}) \cdot \mathsf{n}(u_{seg})$ (16) $\begin{bmatrix} \int_{V0} (\partial W / \partial \boldsymbol{e}_{ij} + 2\boldsymbol{I} (\partial J / \partial \boldsymbol{e}_{ij})) ((\partial \boldsymbol{f}_{M} / \partial X_{j}) \boldsymbol{u}_{Mn} + \boldsymbol{d}_{jn}) (\partial \boldsymbol{f}_{N} / \partial X_{i}) dV = \boldsymbol{r}_{Nn} + \boldsymbol{r}_{Nn}^{L} (\boldsymbol{u}_{S_{p}}) \\ \int_{V0} \boldsymbol{j}_{R} 2(J-1) dV = 0 \tag{1}$ (17)<u>固体 - 液体連成解析のための全体剛性方程式</u>: $\begin{bmatrix} \mathsf{K}_{1}^{i-1} + \mathsf{K}_{1L}^{i-1} & \mathsf{K}_{2}^{i-1} \\ \mathsf{K}_{3}^{i-1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathsf{U}^{i} \\ \Delta \mathbf{I}^{i} \end{bmatrix} = \begin{bmatrix} \mathsf{F}\mathsf{U}_{1}^{i-1} \\ \mathsf{F}\mathsf{U}_{2}^{i-1} \end{bmatrix} + \begin{bmatrix} \mathsf{R} + \mathsf{R}_{L}^{i-1} \\ \mathbf{0} \end{bmatrix}$ (18)

● 計算目的

- 計算条件
- 計算結果

計算目的

1) バックル材の形状がバックル効果に対する影響.

2) 縫合幅がバックル効果に対する影響.

6.4mm, 8.8mm

3) 眼圧がバックル効果に対する影響.

1.5mmHg, 3.75mmHg

バックリング手術

計算条件

	buckle shape	suture width	internal pressure
case1	quadrilateral-like	8.8 mm	3.75 mmHg
case2	ellipse-like	8.8mm	3.75 mmHg
case3	quadrilateral-like	8.8mm	1.50 mmHg
case4	ellipse-like	6.4mm	1.50 mmHg

Table Buckling conditions in each analysis

Table Material constants for the tissues

	cornea	sclera	choroid	retina	optic nerve	lens
c_1	0.0333	0.0833	0.0083	0.0008	0.0083	16.67

neo-Hooke material model: $W = c_1(I_1 - 3)$

Liquid bulk modulus: 2083.3 MPa Zinn's zonule Young's modulus: 100 MPa

計算結果

バックル材の形状がバックル効果に対する影響

