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A steady evaporation flow never exceeds the local sonic speed however strong the evaporation process
occurring at the condensed phase may be. This well-known feature can be well grasped by looking at the
transition process of the strong transient evaporation flow toward its final state. Here this is shown by
means of the numerical simulation of the flow based on the Boltzmann equation of BGK type subject to
the diffusive boundary condition at the condensed phase(s). It will be shown that the expansion waves
produced by the evaporation process at the interface surface, which are being swept backward by the
supersonic flow, play an important role in the approach of the transient supersonic flow field to the sonic
final state.

1. Introduction

An evaporation flow, when it attains the steady state,
never exceeds the local sonic speed however strong the evap-
oration process occurring at the condensed phase may be
(see, e.g., [1]). This is a well-known fact and several approx-
imate analyses showing that the local flow Mach number is
unity have been given ([2] and [3]). However, the physical
explanation or reason why steady evaporation flows never
exceed the sonic speed seems to be not well clarified. Here
we try to show an aspect of this feature by means of the nu-
merical simulation based on the Boltzmann equation of BGK
type [4] subject to the diffusive boundary condition at the
condensed phase(s). Actually we study the transient process
of a strong evaporation flow, which is initially supersonic,
and how it approaches the sonic state as it proceeds toward
the steady state. It will be shown that the expansion waves
produced by the evaporation process at the interface surface
play an important role in the approach of the flow field to the
sonic state. The expansion waves are propagating toward the
condensed phase; however, owing to the supersonic evapora-
tion flow prevailing, they are being swept backward by the
flow, augmenting the thermodynamic quantities whereas re-
ducing the velocity of the gas in the flow field. It may well
state that it is these swept back expansion waves that lead
the transient supersonic flow to its final sonic state.

2. Kinetic formulation

Let the condensed phase of a vapor be located at x = 0
and the half-space ( x > 0 ) be occupied by the stationary
vapor. Initially, the condensed phase and the vapor phase
are in complete equilibrium at a temperature T0 . The pres-
sure, density and number density of the vapor at this state
are P0, ρ0 and N0 , respectively. Suppose that, at time
t = 0, the temperature of the condensed phase is suddenly
changed, i.e., T0 → TW . This leads to the onset of phase
change processes at the condensed phase, giving then rise to
transient motions of the vapor. The Boltzmann equation of
BGK type [4] for the description of the motions of the vapor
may be written as
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where t is the time; x is the coordinate; ( ξx, ξy , ξz ) is the
molecular velocity vector; f is the molecular velocity distri-
bution function, Fe being the local Maxwellian distribution
characterized by the local fluid dynamic quantities; N , u,
T , P and ρ are, respectively, the number density, the ve-
locity, the temperature, the pressure and the density of the
gas; m is the molecular mass; k is the Boltzmann constant
and R = k/m is the gas constant per unit mass of gas. νc
is a constant associated with the collision frequency (Nνc is
the local collision frequency) and, hence, can be calculated
either from the viscosity µ or from the thermal conductiv-
ity λ of the gas at a certain uniform state, say, at the initial
uniform state, by the relation
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the suffix 0 being understood to indicate the quantities asso-
ciated with the initial state. It may be noted here that, in the
BGK model equation, the relation λ = (5/2)Rµ holds and,
hence, the Prandtl number is unity for this model equation.

The initial condition for the distribution function f for
the present problem is, at t = 0
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everywhere in the gas phase (x > 0 ) for all possible values
of the molecular velocity vector ( ξx, ξy, ξz ). This is the
stationary Maxwellian distribution function corresponding
to the initial uniform state of the flow field. The boundary
condition for f at the condensed phase at x = 0, on the
other hand, may be specified as
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for molecules leaving the surface of the condensed phase
( ξx > 0 ), where NW is the number density for molecules
leaving the surface and is a unique function of the tempera-
ture TW . Here, NW is taken as the saturated vapor number
density at the temperature TW , which is determined by the
Clapeyron-Clausius relation (see e.g., [5]) as
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where PW is the saturated vapor pressure at the tempera-
ture TW and Γ is a non-dimensional parameter associated



with the latent heat for vaporization per unit mass, hL, and
is defined by

Γ ≡ hL

RT0
. (9)

For the actual numerical calculation, the following new
variables g and h , which are functions of t , x and ξx�
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have been introduced [6] in order to reduce the number of
the independent variables from 5 to 3. With these new de-
pendent variables g and h , the governing kinetic equations
and the initial and boundary conditions have been rewritten,
and then solved numerically by a difference scheme.

3. Characteristic parameters

For the present problem, we introduce the length scale L
and the time scale τ0 taken as
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where γ is the specific heat ratio ( γ = 5/3 here) and
c0 ≡ (γRT0)

1/2 is the sound speed at the initial state. l0 is
the mean free path of the gas molecules at the initial state
defined by

l0 =
(8RT0/π)

1/2

N0νc
=
µ0

P0

� 8RT0

π

�1/2

(12)

It may be mentioned that, since the length scale L is of
the order of the molecular mean free path l0 , the time
scale τ0 adopted here represents the mean collision time
of gas molecules at the uniform initial state. With the
fluid dynamic quantities at the initial state together with
these length and time scales, the system of the governing
kinetic equations and the initial and boundary conditions is
appropriately nondimensionalized, giving the following non-
dimensional parameters
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which characterize the present flow field.

4. Results and discussion

A great number of cases have been calculated so far that
have produced strong evaporation flows, which are super-
sonic initially and then gradually approaching their final
sonic states. One of the typical cases is shown in Figs. 1
and 2, where a strong transient evaporation flow, which is
supersonic in the bulk of the flow field, is taking place. The
incipient flow is accelerating from being subsonic within the
Knudsen layer, which is formed in the close vicinity of the
condensed phase, becoming sonic somewhere around its edge
and then to supersonic outside the layer. The expansion
waves, which can be noticed by the fan-like part of the dis-
tributions in the figures, are being continuously swept back-
ward with time into the flow, decreasing the velocity and
increasing the thermodynamic quantities such as pressure,
density and temperature. The origin of the fan-like expan-
sion waves seems to be almost at the outer edge of the Knud-
sen layer. The position of this origin indicates the sonic point
of the present flow because one of the expansion fan waves
(or maybe the front wave of the expansion fan) should be
standing still at the point, remaining there until the steady

state of the flow is established. During the course, the tail
part of the expansion waves is gradually reducing the super-
sonic speed of the flow toward its sonic speed as it is being
constantly swept backward by the flow. The time when the
very tail of the expansion waves being swept backward sup-
presses the supersonic flow is the time when the sonic state is
established all over the flow field. It may be noted that these
swept back expansion waves never lead the flow field to the
subsonic state; when the flow field becomes subsonic, these
waves are no longer swept backward by the flow but proceed
through the subsonic flow field toward the condensed phase
of evaporation side and will be eventually absorbed by it.
The establishment of the sonic steady state, however, takes
an infinite time in the present half-space problem because of
the long persistence of the swept back expansion waves in
the flow field. Strictly speaking, therefore, the exact sonic
steady state is never attained in this case; only the limiting
state is possible. Incidentally, it may be noted that the ve-
locity u/c0 has a hump (not the one due to the numerical
errors). This is a structure that the velocity field has within
the contact region, which has been noted and analyzed by
Onishi et al. (see [7]).

Figure 3 shows in x − t diagram a schematical view of
an early stage of a supersonic flow of this kind due to the
strong evaporation process taking place at the condensed
phase. This may serve to get a clear idea of the flow pattern.
A shock wave produced by the evaporation is propagating
through a stationary gas, followed by a contact region (con-
tact surface in Euler terms) behind. The expansion waves in
a form of a fan produced at the same time are being swept
backward into the flow field owing to the supersonic state.
A schematical view of the distributions of the pertinent fluid
dynamic quantities at a certain elapse of time are also shown
in this flow state. Within the swept back expansion region
near the boundary, the velocity has a straight line with a
slope, the end point at the boundary being the sonic point.
As the swept back expansion region expand with time, the
slope becomes smaller and smaller until it gets totally flat-
tened. The velocity in this final state is sonic all over.

This feature will also be looked at if we consider the two-
surface problem in which another condensed phase is placed
in parallel at a certain distance L from the first one. The
temperatures of the first and second condensed phases are
changed from the initial temperature T0 and kept at TW1

and TW2, respectively. In this two-surface problem, the
nondimensional parameters characterizing the flow are as fol-
lows:
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where Kn is the Knudsen number, which appears explicitly
in this case. In Figs. 4 and 5, the variations of the local
flow Mach number u/c with time t/τ0 are shown. τ0 is de-
fined by τ0 = L/(2RT0)

1/2 in this case. In both cases, the
evaporation flow is supersonic at early stages. The difference
between the two cases, however, manifest itself right after the
initial shock wave has interacted with the condensed phase at
x = L. The interaction causes the condensation at the con-
densed phase; the mass flow behind the shock wave will con-
dense onto the condensed phase. In some cases, however, a
part of the mass flow remains unabsorbed by it and causes in
its close vicinity the compression region, which starts propa-
gating as a reflected shock wave toward the evaporation side
at x = 0. This situation is clearly visible in Fig. 4, where
the swept back expansion waves, the reflected shock wave
and their interaction itself (see e.g., the time t/τ0 = 6.0 and
its after) are all lowering the flow velocity from the initial
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Fig. 1: Transient distributions of the pressure, density
and temperature for TW /T0 = 1.6, Γ = 11.0 (PW /P0 =
61.86781 and NW /N0 = 38.66738). The interface surface is
at x = 0. The numbers in the figures indicate the time t/τ0.

supersonic speed to the final subsonic one. This subsonic
state is in this case the steady state achieved.

In the case of Fig. 5, on the other hand, owing to the
strong evaporation process and the consequent strong ini-

0 100 200 300

0

0.5

1

1.5

u
c

x/L

1000

200

40 80 1202

0

0 100 200 300

0

0.5

1

1.5

u
c

x/L

1000

200

40 80 1202

0 20 40

0

0.5

1

1.5

u
c

2.0 4.0
8.0

x/L

12.0

20.0

30.0

16.0

1000

Fig. 2: Transient distributions of the velocity and the lo-
cal Mach number for TW /T0 = 1.6, Γ = 11.0 (PW /P0 =
61.86781 and NW /N0 = 38.66738). c is the local sound
speed. The interface surface is at x = 0. The numbers in
the figures indicate the time t/τ0. Note that the velocity
u/c0 has a hump structure within the contact region [7], not
the numerical errors.

tial shock wave, the gas pressure behind the shock wave be-
comes sufficiently high enough to push the whole mass flow



Contact S.

Shock W.

Expansion W.

t1

T0

P0

ρ0

u=0

Fig. 3: A schematic view of an early stage of the propa-
gation of waves, a shock wave, a contact surface and swept-
back expansion waves, in the transient supersonic flow field
caused from the onset of strong evaporation process at the
condensed phase. The profiles of the fluid dynamic quantities
at a certain time t1 are shown below. The flow velocity u
is supersonic ( u > c ) except at the boundary surface where
the flow is sonic (u = c ). Note that the curved parts of the
profiles of the thermodynamic quantities in the swept back
expansion region are more or less exaggerated.

into the condensation surface (at x = L ) after the shock
wave has reached it (see the mass flow in Fig. 6). The swept
back expansion waves continue to augment the gas pressure
as they are propagating backward toward the condensation
surface, reducing the flow velocity from supersonic toward
sonic. During the course of time, the whole mass flow is be-
ing condensing onto the condensation surface due to the ex-
isting large difference between the gas pressure formed near
there and the saturated vapor pressure corresponding to the
temperature of the surface itself. This situation continues
until the flow velocity becomes sonic all over the flow field
except the Knudsen layers. However, owing to the nature of
the swept back expansion waves, this flow field seems never
to attain the exact steady sonic state; only its limiting state
may be possible just as in the case of the half-space prob-
lem. Or at least, it takes an extremely long time for the
flow field to attain its steady state. The reason is that, as
the flow field approches the sonic state, the swept back ex-
pansion waves become hardly mobile and persist in the flow
field until they diffuse away completely because of the vis-
cous action. The expansion waves at this stage, however,
are now extremely weak and may be considered to be hardly
subject to the viscous action. Therefore, virtually immobile
expansion waves prevail in the bulk of the present flow field,
the state of which is not the steady state strictly speaking,
because the steady state is, presumably, the state at which
these expansion waves have completely disappeared. Fig-
ure 7 shows this nature of persistence of the expansion waves
in the flow field in terms of the local flow Mach number near
the condensation surface. Slowly varying nature of the local

flow Mach number can be seen owing to the almost immobile
swept back expansion waves prevailing in the flow field.
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Fig. 4: Transient distributions of the local flow Mach num-
ber u/c of a vapor between the two parallel plane con-
densed phases placed at a distance L apart. TW1/T0 =
1.6, TW2/T0 = 1.0, Γ = 9.0 (PW1/P0 = 29.22428 and
NW1/N0 = 18.26518 ) and Kn = 0.005. TW1 and TW2

are the temperatures of the condensed phases at x = 0
and x = L, respectively. The numbers in the figures in-
dicate the time t/τ0, τ0 being defined in this case by

τ0 = L/(2RT0)
1/2. Incidentally, the values of u/c at

time t/τ0 = 50.0 are u/c = 0.3771295 at x/L = 0.0,
u/c = 0.8385715 at x/L = 0.5 and u/c = 0.9458901 at
x/L = 1.0. The Mach number of the initially produced shock
wave is about Ms = 1.865.
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Fig. 5: Transient distributions of the local flow Mach num-
ber u/c of a vapor between the two parallel plane con-
densed phases placed at a distance L apart. TW1/T0 =
1.6, TW2/T0 = 1.0, Γ = 11.0 (PW1/P0 = 61.86781 and
NW1/N0 = 38.66738 ) and Kn = 0.005. TW1 and TW2

are the temperatures of the condensed phases at x = 0
and x = L, respectively. The numbers in the figures in-
dicate the time t/τ0, τ0 being defined in this case by

τ0 = L/(2RT0)
1/2. Incidentally, the values of u/c at

time t/τ0 = 440.0 are u/c = 0.3343818 at x/L = 0.0,
u/c = 1.000155 at x/L = 0.5 and u/c = 1.143063 at
x/L = 1.0. The Mach number of the initially produced shock
wave is about Ms = 2.313.
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Fig. 6: Transient distributions of the mass flow ρu/(ρ0c0)
of a vapor between the two parallel plane condensed phases.
TW1/T0 = 1.6, TW2/T0 = 1.0, Γ = 11.0 (PW1/P0 =
61.86781 and NW1/N0 = 38.66738 ) and Kn = 0.005. The
numbers in the figures indicate the time t/τ0.
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Fig. 7: A portion of Fig. 5, which shows the time devel-
opment of the local flow Mach number u/c near the con-
densation surface at x = L, the evaporation surface being
at x = 0. The flow field is at its final stage. TW1/T0 =
1.6, TW2/T0 = 1.0, Γ = 11.0 (PW1/P0 = 61.86781 and
NW1/N0 = 38.66738 ) and Kn = 0.005. The numbers in the
figure indicate the time t/τ0.


