
第 15 回数値流体力学シンポジウム
B09-4

レーザー爆縮における非局所電子熱伝導
Nonlocal Electron Thermal Conduction in Laser Implosions
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A 1-D electron-thermal-conduction calculation code based on the Vlasov-Fokker-Planck equation has been devel-
oped. Our code includes the electron-ion and electron-electron collisions. The electron distribution function is
expanded into the zeroth-, first-, and second-order terms of Legendre polynomials, which are solved simultane-
ously. We combined our code with the 1-D hydrodynamic code to calculate the nonlocal thermal conduction in
the ICF implosion.

The inertial confinement fusion (ICF) plasma has
wide parameter ranges where the elctron number den-
sity changes from 1019 to 1026cm−3, and the electron
temperature varies from room temperature to 105eV .
In the case of lower density and higher temperature,
the electron-ion and electron-electron collision decrease
and the electron mean free path can be similar to
the temperature gradient scale length. In such cases,
the electron velocity distribution function diverges from
Maxwellian, and the Spitzer-Härm model1) overesti-
mates the thermal flux beyond the physical limit. In
order to remedy this overestimation, the flux-limiter was
introduced to the SH model, and the electron thermal
flux is given by Eq.(1),

qe = min(fqF S , qSH) (1)

where qe is the electron thermal flux, qFS is the free-
streaming thermal flux defined as qFS = neTe(Te/me)

1
2 ,

ne is the electron number density, Te the electron tem-
perature in energy unit, and me the electron mass, re-
spectively. This is called the flux-limited Spitzer-Härm
model2). This model gives a reasonable flux, and has
been widely used for many simulations. However, this
model is empirical, since it requires the flux-limiter to
be determined from the comparison with experimen-
tal results and also from simulations. For the gen-
eral conditions covering all the parameter region of the
ICF plasma, we should calculate the electron thermal
conduction based on the Vlasov-Fokker-Planck (VFP)
equation3), which describes the time evolution of the
electron velocity distribution function.

We have developed our VFP code. We adopted the
moving coordinate attached to the moving ion as the
frame of the electron distribution function. The electron
velocity distribution function f is expanded by the Leg-
endre function to the zero-th f0, first f1 and second f2

order parts4) that are solved simultaneously. We used
the collision operators for electron-ion collision4) and

electron-electron collisions5). The electric field is calcu-
lated in the quasi-charge neutral condition6). Also, we
introduce the friction term against the change of tem-
perature in order to introduce the effect of the real heat
capacity resulting from the general equation of state.
Our Vlasov-Fokker-Planck (VFP) code aimes at con-
necting to a hydrodynamic code. Therefore, this code
is used as one of the subroutines of the hydrodynamic
code.

In our code, we used the operator splitting method
for the electron-electron collision and the electron-ion
collision;
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where, Cee and Cei are the electron-electron collision
term and the electron-ion collision term, respectively.
fn

s (s = 0, 1, 2) is the distribution function at time step
n, and f∗

s is defined as the intermediate value. fn+1
s

is defined at time step n + 1. S0 is the source term.
The electron velocity distribution function is expanded
up to � = 3 mode by Legendre polynomials 4) as shown
below.

Zero-th order;
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First order;
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Second order;
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Third order;
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where f0, f1, f2 and f3 are the isotropic part (� = 0),
� = 1, � = 2 and � = 3 mode, respectively. For the clo-
sure of these coupled equations, we use the simplified
f3 equation without the correction terms of the hydro-
dynamic motion. Also, some additional terms for the
non-planar geometry are omitted, and the initial condi-
tion of f3 is reset to 0 at every time step.

In the above equations, Cee considers interaction
among f0 itself only. νei is the electron-ion colli-

sion frequency given by νei = φ4πneZ
∗
(

e2

me

)2

lnΛ/v3,
which effectively includes the corrections of higher or-
der terms7) neglected in the electron-electron collision
operator. φ is given by φ = (Z∗+4.2)/(Z∗+0.24). The
effective charge Z∗ is defined by Z∗ = < Z2 >/< Z >,
where < Z2 >, < Z > are the square charge and charge
averaged over the ion species, respectively. e is the elec-
tron charge, and lnΛ Coulomb logarithm8). U is the ion
velocity.

S0 and η are a source term and a friction term needed
to consistently couple with a hydrodynamic code. S0
accounts for the change in the Maxwell distribution
function fM = ne(me/2πTe)

3
2 exp(−mev

2/2Te), i.e.,
S0 = δ(fM ), due to changes in the electron density
and temperature from the ionization, radiation trans-
port, laser absorption, and pdV work calculated by the
hydrodynamic code before the FP calculation. The de-
tail definition of S0 will be described later. The friction

term η was introduced to effectively take into account
the heat capacity for the real gas. This term restrains
the temperature change due to the thermal conduction
according to the real gas heat capacity per electron cve.
The ideal gas capacity per electron cve is 3

2 . For real
gas, η is given by η = 2 cve/3, where cve is obtained
from the hydrodynamic code. .

For electron-ion collision calculation, we used the
MacCormak scheme9) in the velocity direction. The
equations for f0, f1, and f2 above are solved using a
tri-diagonal solver. These equations are solved from
j = J(= jmax) to j = 1 in a reversed order. There-
fore, when we calculate at j, the j + 1 terms have been
already solved, and we can calculate the j order terms
with the backward differencing term of fj−fj−1

∆v
j− 1

2

and the

forward differencing term of fj+1−fj

∆v
j+ 1

2

. In the calculation

of fj , both terms fn+1
j+1 and fn

j−1,required for the calcu-
lation, are already known, and we can solve the flux in
the velocity direction without solving the matrix. It is a
merit of using the MacCormak sheme in the velcoity di-
rection. This enable us to calculate the flux in the both
direction of the configuration space coordinate and the
velocity space coordinate simultaneously, contribute to
the numerical stability and save the computation time.
For the configuration space, we adopted the full implicit
finite difference method with the staggered grid shown
in Fig.1.
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Fig. 1: Calculation grid configuration

In calculating of the electric field a (= eE
me

), we
solve the Poisson equation using an implicit moment
method11) with current free condition, and the electric
field a in the finite difference form is given by
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(8)
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In Eqs.(9) and (10), θ is the parameter of the ratio of
explicit and implicit fluxes in the MacCormak scheme.
α is given by

αj = 1 + ν∗
ei∆t− 3
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Furthermore, we replace the values defined at time
step n+ 1 by the predicted values given by

fn+1
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0 j,k +∆S0,j,k (11)
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In actual calculations, we use the normalized electric
field a

n+ 1
2

k+ 1
2
instead of an

k+ 1
2
and an+1

k+ 1
2
for the sake of

simplicity.

In order to study the nonlocal electron transport ef-
fects on the hydrodynamics, this VFP code should be
connected with a hydrodynamic code consistently. We
replace the thermal conduction routine based on the
Spitzer-Härm model by the VFP code, where the VFP
routine is operated as the one of the subroutines in the
hydrodynamic code. When the VFP routine is called

from the hydrodynamic calculation routine, some phys-
ical variables are transfered into the VFP routine.

From the hydrodynamic code, those parameters listed
bellow are transfered at every time step.

• Configuration mesh location x

• The elecron number density ne

• The elecron temperature Te

• The ionization degree < Z > and average value of
< Z2 >

• The ion velocity U

• The mass density change of ρn and ρn−1

• The source term S0

• The electron heat capacity cve

For the source term of the VFP routine, we assume a
Maxwellian distribution. Therefore, the change of the
temperature and the electron density due to the ioniza-
tion, radiation transport, laser absorption, and hydro-
dynamic motion are included via changes of the Maxwell
distribution function. We estimate the source term in
two different forms. For the change of temperaure with
constant density, we use the source term given by

∆f0(v)a = fM (ne, Tb)− fM (ne, Ta) (14)

This temperature change includes processes such
as the radiation transport and laser aborption. For
changes of the electron number density due to ionization
at constant temperaure we use

∆f0(v)b = fM (∆ne, Ta) (15)

Then, the source term S0 is given by the sum of the
Eqs.(14) and (15) as;

S0 = ∆f0(v)a +∆f0(v)b (16)

Next, we describe the method of determining the elec-
tron temperature using the VFP routine. We treat the
source term in the hydrodynamic calculation to be the
Maxwell distribution function. However, in the VFP
routine, we do not assume the distribution function to
be Maxwellian. Therefore, the distribution function is
independently preserved in the VFP routine. We in-
put the contribution of other processes as a source term
into the VFP routine, and the electron temperature is
returned to the hydrodynamic code after the electron
thermal conduction calculation. At that time, the dis-
tribution function should be consistent with the den-
sity and temperature of the hydrodynamic calculation.
Therefore, after the calculation in the VFP routine is
done, we return the effective temperature, Teff , cal-
culated from the non-Maxwellian distribution function
back to the hydrodynamic code, where Teff is given by

Teff =
4πme

3ne

∫ ∞

0

v4f0dv. (17)

From the point of view of the hydrodynamic code, we
might say that the VFP thermal conduction routine is
a part of the energy equation. We describe the hydro-
dynamic equation in the Lagrangian form given by
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dρ

dt
= ρ∇ · *u (18)

ρ
du

dt
= −∇(P +Q) (19)

ρ
dεi
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= −(Pi +Q)∇ · *u−∇ · *qi +Qei (20)

ρ
dεe

dt
= −Pe∇ · *u−∇ · *qe −Qei + SL + Sr (21)

where, ρ is the mass density, u is the fluid velocity,
pi and pe are the ion pressure and the electron pres-
sure, respectively. p = pe + pi is the total pressure, Q
the artficial viscosity, Te and Ti are the electron and
ion temperature, respectively. εe and εi are the spe-
cific internal energies, respectively, Qei the electron-ion
energy relaxation term and SL and Sr are, respectively,
the laser absorption term and the energy deposition due
to the radiation transport.
In the calculation of the energy equation of Eqs.(20)

and (21), the equations are usually expressed in terms
of the temperature. Using the ion and electron specific
heat ci, ce, these equations are reduced to

ρci
dTi

dt
= −(Pi +Q)∇ · *u−∇ · *qi +Qei (22)

ρce
dTe

dt
= −Pe∇ · *u−∇ · *qe −Qei + SL + Sr(23)

where Ti and Te are the ion and electron tempera-
ture, respectively. When we calculate the electron en-
ergy equation using the VFP code, we divide the en-
ergy equation into two part using the operator splitting
method as;

ρce
T ∗

e − Tn
e

dt
= −Pe∇ · *u−Qei + SL + Sr(24)

ρce
Tn+1

e − Tn
e
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= −∇ · *qe + ρce

T ∗
e − T n

e

dt
(25)

where T n
e is the electron temperature defined at time

step n, and T ∗
e is the intermediate value. T n+1

e is the
electron temperature defined at the time step n+1. We
regard the contribution due to T ∗

e − Tn
e as the source

term of the distribution function of f0. Finally, by
replacing Eq.(23) by the VFP calculation routine, we
can solve the energy equation with the VFP routine
and obtain the electron temperature Tn+1, which is the
electron effective temperaure Teff in the VFP routine.
Equations (22) and (23) are equivalent to Eqs. (2) and
(3).

In order to calculate the nonlocal thermal conduc-
tion and to study the effect in the ICF implosion, we
combined our VFP code with the hydrodynamic code
LILAC10).

We simulated the implosion of a polystyrene CH
shell of diameter 900µm and thickness 20µm filled with
15atm D2 gas. The 0.35µm laser pulse was a 1-ns du-
ration square with a rise time of 200ps and a constant
power of 25TW from 0.4ns to 1.4ns. The irradiation
intensity on the target was 9 × 1014W/cm2. In Fig.2,
we show the density and temperature profiles at 1.5ns.
We can see that VFP calculation gives a slightly dif-
ferent profiles compared to that of the flux-limited SH
calculation with flux-limiter of 0.06 and 0.07.

coordinate

Fig. 2: Density and temperature profiles at 1.5ns.
Solid line is FP. Dashed line shows flux-limited SH
with flux-limiter of 0.07. Thin line show the case with
flux-limiter of 0.06.

In conclusion, we have developed a 1-D electron-
thermal-conduction calculation code based on the
Vlasov-Fokker-Planck equation. We combined our code
with the 1-D hydrodynamic code to calculate the non-
local thermal conduction in the ICF implosion. We suc-
cessfully calculated CH target implosions. VFP calcu-
lation gives density and temperature profiles that are
slightly different from that of flux-limited SH calcula-
tion.
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