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A simple and accurate numerical method is presented to produce velocity fluctuations that are determined by the 
prescribed physical quantities and qualities of turbulence. The fluctuations are directly obtained by solving a 
system of nonlinear equations. This method requires as many computer memories and computations as 
one-dimensional case even for the three dimensional calculations.  The solutions are quite accurate with less than 
0.01% relative errors. Then these solutions are used to examine the capability of the vortex methods to produce 
turbulent flows with the prescribed parameters. Although the energy spectra by the vortex method scatter to some 
extent, they are distributed along the prescribed spectra even at the higher frequency regions. It can be said that 
the vortex methods are able to simulate the target turbulence qualitatively well. Also it is found that the solutions 
with the LES model increase and deviate from the target spectrum at the higher frequency regions. 
 

 
 
 
 
 
1. INTRODUCTION 
 

One of the crucial problems for the turbulent simulation is 
how to set up the inlet boundary condition that provides the 
physical quantities and qualities of turbulent flows as listed 
below. 
 

1. Longitudinal and transverse spectra: ( )LE f  

and ( )TE f  
2. Root mean square of the velocity fluctuation: 
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3. Mean velocity: U  
4. Kinematic viscosity: ν  
5. Longitudinal and transverse integral scale: 11L  

and 22L  

6. Kolmogorov scale: 
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7. Gaussian frequency distribution of velocity 
fluctuations 

Several researchers have presented numerical methods to 
produce velocity fluctuations for the turbulent simulation. 
Iwatani (1) used the multidimensional autoregressive 
processes to produce velocity fluctuations from the power 
spectra and the cross spectra of fluctuations. The velocity 
fluctuations are given by a linear summation of white noise 
and of the past fluctuations with the coefficients that are 
obtained by solving a system of linear equations. The 
simulated results are somewhat noisy and have to be 
modified to obtain desired RMS.  

Maruyama and Morikawa (2), and Kondo et al. (3) used 
the method of the trigonometric series with Gaussian random 
coefficients, in which the velocity fluctuations are expressed 
by a series of cosine and sine functions. The coefficients of 
the functions are obtained by solving a system of linear 
equations. They do not consider the distant grid points to 
lighten computational loads. This may produce numerical 
errors that cannot be disregarded.  

The first purpose of this paper is to present, in Section 2, a 
simpler and more accurate numerical method to produce 
series of velocity fluctuations. In this method, it is the 
longitudinal or transverse spectrum that is expressed by a 
series of cosine and sine functions. The coefficients of the 
functions are the velocity fluctuations themselves and these 
are obtained by solving a system of nonlinear (not linear) 
equations. 

On the other hand, the vortex methods have been used for 
turbulent flow simulations with LES models (4, 5, 6, 7). 
Leonard and Chua (4), and Kiya and Izawa (5) incorporated 
the Smagorinsky model into the vortex methods by means of 
nonlinear core-spreading algorithm. Mansfield et al. (6) 
presented a LES scheme using a dynamic eddy diffusivity 
model. Kamemoto et al. (7) reviewed the recent works on 
LES modeling and emphasized the necessity of developing 
wall turbulence models. To see if these models are really 
working, it is necessary to examine whether the energy 
spectrum produced by these vortex methods are expected one 
because LES is to handle the energy spectrum of the lower 
frequency by modeling that of the higher frequency. Before 
doing this examination, it should be confirmed whether the 
vortex methods can handle the energy spectrum or are 
versatile enough to produce the prescribed energy spectrum. 
Totsuka and Obi (8) calculated the energy spectrum using 
vortices and reported that the spectrum deviates from the 
target at the higher frequency regions when the resolution 
(vortex number) is insufficient. 

The next purpose of this paper is to examine the capability 
of the vortex methods to produce flows with the prescribed 
physical quantities and qualities of turbulence mentioned at 
the beginning of this section. To do so, in Section 3 we apply 
the results of Section 2 to the vortex methods, and the LES 
model is used to see how it works. It is found that the vortex 
methods are able to simulate the target turbulence 
qualitatively well, and that the solutions with the LES model 
increase and deviate from the target spectrum at the higher 
frequency regions. 
 
2.  PRODUCING VELOCITY FLUCTUATION 
 
2.1 One-Dimensional Case 
 

In this subsection, we introduce a method to numerically 
produce a series of velocity fluctuations, which are 
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determined by the prescribed physical quantities or 
parameters mentioned in Section 1. 

We consider the following longitudinal spectrum ( )LE f  

and the Eulerian time-correlation ( )
E
R τ , 
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In this case, the directions of the mean velocity U and the 
velocity fluctuation ( )u t are the same. 

Equation (1) can be rewritten as 
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where the following relations have been employed. 
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Equation (2) is regarded as a system of simultaneous 

quadratic equations with N  unknowns, ju . Since the 

number of the equations is /2N  ( 0 ~ /2 1k N= − ), we 
divide Eq.(2) into two parts to supply the deficit in the 
equations as 
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where r  is a random number which we introduce expecting 
the frequency distribution of the solutions to be Gaussian. 
This division makes the equation number the same as the 
unknowns, and also linearizes the nonlinear equations, which 
promotes the convergence of the solutions. 
    When 0k =  for the lower equation in Eq.(4), all the 
coefficients in the left hand side become zero, which makes 
no sense. We use the following equation instead in order to 
incorporate RMS, which is given as one of the prescribed 
parameters.  
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Equation (5) is nonlinear and thus the system of the 
simultaneous equations has to be treated as a nonlinear 
system.  Even so, the velocity fluctuations can be obtained 
directly by as simple manner as just solving these equations 
because the unknowns are the velocity fluctuations 
themselves unlike the methods mentioned in Section 1 (1, 2, 
3).  

It should be noted that the solutions to the system of 

equations (4) and (5) are not unique so that various sets of 
 

Figure 1 Three dimensional model 
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the solutions depending on the initial values and the random 
numbers can be obtained. This is another advantage of our 
method because of the coincidence with the characteristics of 
the turbulent flows. 
 
2.2 Three-Dimensional Case 
 

Since the inlet boundary is usually two-dimensional, the 
series of velocity fluctuations passing through the boundary 
grids must be produced on the basis of both the longitudinal 
correlation and of the transverse correlation. 
    As shown in Fig.1, we consider that the inlet boundary 
is located on the -y z  plane, and that the fluid flows in the 

-x direction. 
First, we obtain the velocity fluctuations 00

ju  that pass 

through the grid point 0 0( , )y z  by the method explained in 

subsection 2.1.  Then the fluctuations 10
ju  going through 

the next grid point 1 0( , )y z  can be also obtained by the 
same procedure except that the following transverse 
correlation has to be incorporated. 
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where ( )TE k  is the energy spectrum of the transverse 

correlation, and M  is the grid number on the -y  and 

-z axes.  Further, the fluctuations  20
ju  at  the next 

point 2 0( , )y z  require the following two more equations. 
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  Generally, the fluctuations lm
ju  at ( , )ml

y z  are 

calculated by Eqs.(4) and (5), and the following equations 
 
 
 



mentioned above except that the longitudinal correlation and 
the transverse correlation should be considered for each case 
(Table 1). 

In this way, the velocity fluctuations on the inlet boundary 

Table 1 Longitudinal and transverse correlations  
to consider 

 -x direction -y direction -z direction 

u  longitudinal transverse transverse 
v  transverse longitudinal transverse 
w transverse transverse longitudinal

 
Table 2  Parameters used in simulation 

Mean velocity: U  2.11m/s 

Kinematic viscosity: ν  5 21.562 10 m /s−×  

Root mean square of velocity 
fluctuations:  rms 0.159m/s 

Time step: t∆  31.94 10 s−×  
Grid spacing in flow 
direction: x∆  U t∆  

Integral scale: 11L  5 x∆  

Fluctuation number:  N  200 

Grid number in 
- and -x y directions:M  20 

 

Figure 3   Target  and calculated energy spectra
    

Figure 4  Frequency distribution 
 
 

 
Figure 2    Calculated velocity fluctuations 
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The velocity fluctuations of the -y and -z  components, 
 and j jv w , can be obtained by the same procedures 

are obtained from one grid to the next.  The number of 
unknowns is always N regardless of the grid number M, and 
these are easily obtained by solving a system of nonlinear 
equations. This effectively saves the computer memories and 
loads. 
 
2.3 Examples  
 

For example simulations are conduced using the 
parameters listed in Table 2. The longitudinal and transverse 
spectra given in ref.(9) are used, and these spectra are 
illustrated in Fig.3 by the solid line (longitudinal) and by the 
dashed line (transverse). The system of nonlinear equations is 
solved by the subroutine “hybrd’’ provided in the free 
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software package called minpac (downloadable at, for 
example, http://www.netlib.org/minpack/).  

Figure 2 shows four examples of the simulated velocity 
fluctuations, which pass through the points 1 10( , ),y z  

2 10( , ),y z 3 10( , )y z  and 104( , ).y z  Though these are 
artificially produced, they resemble well those 
experimentally measured. Each series of the fluctuations is 
clearly different but the statistic is the same.    
  The spectra calculated from these fluctuations precisely 
agree with the target spectra as compared in Fig.3. The 
relative error is less than 0.01%, which can be controlled by 
the input parameter. 
  Figure 4 indicates that the velocity fluctuations are 
adequately random so that their frequency distribution fits the 
Gaussian distribution.  
 
3. APPLICATION TO THE VORTEX METHOD 
 

In this section, the capability of the vortex methods to 
produce flows with the prescribed physical quantities and 
qualities of turbulence is examined. Concretely, we examine 
whether the vortex methods can produce the prescribed 
longitudinal spectrum and the root mean square of the 
velocity fluctuations, and whether the frequency distribution 
is Gaussian.  
 
3.1 Vortex Strength 
 

Table 3  Parameters used in simulation 
 

Mean velocity: U  10m/s 

Kinematic viscosity: ν  5 21.562 10 m /s−×  
Root mean square of 

velocity fluctuations:  rms 1.0m/s    

Time step: t∆  48.2 10 s−×  
Grid spacing in flow 

direction: x∆  U t∆  

Integral scale: 11L  and 30x x∆ ∆  

Fluctuation number:  N  1024 
Grid number in 

- and -y z directions:M  2 and 1 

 

 
Figure 5  Target energy spectra 

 
Figure 6  Velocity fluctuations at 11L x= ∆  

Figure 7   Velocity fluctuations at 11 30L x= ∆

http://www.netlib.org/minpack/


v u s
x y

∂ ∂ Γ = − ∆ ∂ ∂ 
           (6) 

where s∆  is the area the vortex occupies. Using the 
velocity fluctuations  and ,j ju v  Equation (6)  can be 

approximately rewritten as 
 
 

1, 1, , 1 , 1
, 2 2

j l j l j l j l
j l

v v u u
s

x y
+ − + −− − Γ = − ∆ ∆ ∆ 

   (7) 

where the subscript ,j l  indicates the thj vortex or velocity 
fluctuation passing through the thl  point on the -axisy .  

Simulations are conducted for two different longitudinal 
integral scales, 11  and 30L x x= ∆ ∆  using the parameters 
listed in Table 3. The transverse spectrum is not considered 
for simplicity. The energy spectra obtained by these integral 
scales are illustrated in Fig.5 showing that the energy at 
smaller wave numbers increases with 11L . 

 Figures 6 and 7 show the velocity fluctuations 
respectively with 11L x= ∆  and 30 x∆ which are 
calculated by the method explained in the previous section. 
Roughly speaking, the fluctuations of 11L x= ∆  lie in the 

straight band while these of 11 30L x= ∆  in the wavy band, 
which indicates that the latter fluctuations have more energy 
in the smaller wave number regions as the target spectrum 
(Fig.5).  
Figure 8   Vortex strength 

Table 4  Parameters used in simulation 
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The velocity fluctuations produced in the previous section 
can be used as the boundary conditions of the 
finite-difference methods as well as the vortex methods as 
explained below.   

In the two dimensional flows, the vortex strength is given 
by  

The vortex strengths calculated using these fluctuations are 
shown in Fig.8. The characteristics of the vortex strength are 
very similar to that of the velocity fluctuations.  
 
 
 
3.2 Vortex Methods and Turbulence 

 
The vortices of the strengths calculated in subsection 3.1 

are supplied at the origin one by one at each time step. The 
series of the strengths are used repeatedly until the 
simulations stop. We do not expect that the field of the 
velocity fluctuations (Figs.6, 7) can be completely 
reproduced by these vortices because of the use of limited 
number of the vortices.  

The movements of the vortices are calculated by the vortex 
method with the diffusion velocity (10).  The core radius of 
each vortex is updated to simulate the vortex stretch.  The 
new core radius is 2 × (distance to the nearest vortex). The 
parameters used for the simulations are listed in Table 4.  

Figure 9 shows the vortex distributions at time 3.35872s, 
namely after supplying four cycles of the series of vortices. 
The successive vortices are connected by the straight lines. 
This figure is extended four times in the -y direction. It is 
observed that the arrangement of the vortices with 

1 30L x= ∆  is much more wavy than the one with 

1L x= ∆  just like the velocity fluctuations and the vortex 
strengths. 

Figure 10 shows the velocity fluctuations at the point (20, 
0) produced by the vortices. The velocity is zero until the 
vortices reach this point at almost time=2. The frequency 
distributions of these fluctuations shown in Fig.11 and 12 
deviate somewhat from the Gaussian profile. The root mean 
square is 0.098m/s for 1L x= ∆  and 0.112m/s for 

Mean velocity: U  10m/s 

Kinematic viscosity: ν  5 21.562 10 m /s−×  

Time step: t∆  48.2 10 s−×  

Initial core radius: σ  2U t∆  

Updated core radius: σ ’ 2 × (distance to the 
nearest vortex) 

 

Figure 9  Vortex distributions    



 
Copyright © 2001 by JSCFD 

6

L

that in Table 3 (namely, 1.0m/s). This is because the vortex  
 

number is not large enough to reproduce the velocity fields 
(Figs. 6 and 7) with which the vortices are created. 

The energy spectra calculated from these velocity 
fluctuations during t= 4.1984 ~ 5.03808 (namely, from 
1024 × 5 steps to 1024 × 6 steps) are illustrated by the mark 
d  in Figs.13 and 14. The energy spectrum is multiplied by 

/ TV
E E where 

V
E is the total energy of the spectrum by 

the vortex method and TE  is that of the target spectrum. 

Figure 10  Velocity fluctuations produced by vortices  
Figure 13     Target and simulated spectra with 11L x= ∆  
 
 

 
 
Figure 14    Target and simulated spectra with 11 30L x= ∆  
1 30 x= ∆ . These values are almost ten times smaller than 

 
Figure 11  Frequency distribution by the vortex
method 11L x= ∆  

 
Figure 12     Frequency distribution by the vortex
method 11 30L x= ∆  



 
Copyright © 2001 by JSCFD 

7

Though the calculated values are scattered to some extent, 
they are distributed surely along the target spectra even at the 
higher frequency regions in contrast to the results by Totsuka 
and Obi (8). We may say that qualitatively the vortex method 
can produce turbulent flows with prescribed parameters. 
 
3.3 Vortex Methods and LES 
 

   The LES models for the vortex methods (4, 5) are used to 
see how they work. Simply, we add the subgrid scale 
viscosity  

2 2
SGS

1max 0, dC
dt
ων σ

ω
 =   

      (8) 

adopted by Leonard and Chua, or 
 

2 2
SGS

1 dC
dt
ων σ

ω
=             (9) 

by Kiya et al. to the diffusion velocity. Here, C=0.17 is 
employed.  

With the first model (8), the vortex distribution in Fig.15 
is almost identical to the one without the model (Fig.9b). 
However, the spectrum at higher frequency regions slightly 
increases and deviates from the target as shown in Fig.16 
because the LES model is to filter out the spectrum of higher 
frequency that the grid spacing cannot handle. With the 
second model (9), the spectrum at higher frequency regions 
deviates more from the target as shown in Fig.17. This may 
be because the subgrid scale viscosity can be smaller than 
zero, which never happens in the original LES model. 

In contrast to the finite-difference methods, the grid 
spacing (the distances between vortices) of the vortex 
methods can increase and decrease freely so that we can 
obtain better solutions at the higher frequency regions 
(Fig.14) than those with the LES model (Fig.16).  
 
4. CONCLUSION 
 

 First, a simple and accurate numerical method is presented 
to produce velocity fluctuations that are determined by the 
prescribed physical quantities and qualities of turbulence. 
The fluctuations are easily obtained by solving a system of 
nonlinear equations using free software. Also this method 
requires as many computer memories and computations as 
one-dimensional case even for the three dimensional 
calculations.  The solutions are quite accurate with less than 
0.01% relative errors. 
   Next, these fluctuations are used to examine the 
capability of the vortex methods to produce turbulent flows 
with the prescribed parameters. The RMS obtained is smaller 
than that expected probably because of the use of insufficient 
number of vortices.  Although the energy spectra by the 
vortex method scatter to some extent, they are distributed 
along the prescribed spectra even at the higher frequency 
regions. It can be said that the vortex methods are able to 
simulate the target turbulence qualitatively well. Also the 
solutions with the LES model deviate from the target at the 
higher frequency regions. Further improvement will be 
required for obtaining quantitative agreement. 
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