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Abstract:  GS (grid-scale) and SGS (subgrid-scale) coherent structures in homogeneous isotropic turbulence are 
identified by a priori test.  GS and SGS velocity fields are obtained by filtering the DNS velocity field for Reλ =64.9 
using two classical filters for LES: Gaussian filter and sharp cutoff filter, and the most important filter width is 
considered as the length of Kolmogorov microscale in the DNS field with a constant multiplication.  Coherent 
structures in the GS field, i.e., structures larger than filter width are considered as grid-scale coherent structures and 
others are subgrid-scale coherent structures.  Second invariant Q of the velocity gradient tensor is used for 
identification of these structures in GS and SGS fields.  By visualizing the contour surfaces of second invariant Q, it 
is shown that GS and SGS fields itself contain lots of distinct tube-like coherent structures in homogeneous isotropic 
turbulence. The characteristic of GS and SGS coherent structures is somewhat similar to DNS structures, which 
indicates that the DNS field may contain multi-scale structures in turbulent flow. 

 
1   INTRODUCTION 

Direct numerical and large-eddy simulations (DNS and 
LES) have been widely used to study the physics of 
turbulence. However, direct numerical simulation for high 
Reynolds number flow requires formidable computing 
power, and is only possible for low Reynolds numbers. 
Generally, industrial, natural or experimental configurations 
involve Reynolds numbers that are far too large to allow 
direct numerical simulation, and the only possible method 
is large-eddy simulation. 

Turbulent flow is completely nonlinear and complex 
and it has been shown in recent years that turbulent flows 
contain various types of vortical structures, more strictly 
coherent structures, but the lack of the proper knowledge 
about these structures prevents the development of 
turbulence theory and turbulent model. During the past 
decades, the studies on the coherent structures in turbulence 
have been the subjects of considerable interest among 
turbulence researchers. The study on these coherent 
structures is promising not only for understanding 
turbulence phenomena such as entrainment and mixing, 
scalar dissipation, heat and mass transfer, chemical reaction 
and combustion, drag and aerodynamic noise generation, 
but also for modeling of turbulence. 

In the theoretical study, it is believed that tube-like 
structure is a type of eddy or vortex, which is the candidate 
of fine scale structure, particularly, in the small-scale 
motions in turbulence. (1)(2)(3)(4)(5) Nowadays, from direct 
numerical simulation of turbulence, (6)(7)(8)(9)(10)(11)(12)(13) fine 

scale tube-like coherent structures in homogeneous 
turbulence are observed, and the visualization of these 
small-scale structures in the turbulent flow becomes 
possible. In the recent studies, by direct use of local flow 
pattern, (10)(11) the cross-sections of tube-like coherent fine 
scale structures are investigated from DNS database of 
homogeneous isotropic turbulence in which the cross-
sections are selected to include the local maximum of 
second invariant of the velocity gradient tensor on the axis 
of the fine scale tube-like coherent structures. In these 
studies, they have shown that mean diameter of the 
coherent fine scale structures is about 10 times of 
Kolmogorov microscale (η) and the maximum of mean 
azimuthal velocity is about a half of r.m.s of velocity 
fluctuations (urms) and that the Reynolds numbers 
dependence of these characters is very weak. The same 
analyses have been applied to turbulent mixing layer (14) and 
showed that the characteristics of tube-like coherent 
structures in homogeneous isotropic turbulence and fully 
developed turbulent mixing layer obey the same scaling law. 
Since the educed fine scale structures in their study have 
similar mean azimuthal velocity profiles and distinct axes, 
they described these structures as ‘coherent fine scale 
structures’ in turbulence. The characteristics of vortical 
structures in turbulent channel flows (15) and MHD 
turbulence (16) also show the similar behavior of tube-like 
structures in homogeneous isotropic turbulence. These 
results suggest that the existence of ‘coherent fine scale 
structure’ in turbulence is universal. 
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Although DNS is the most exact approach to turbulence 
simulation but too expensive and is possible relatively in 
simple flow fields while large-eddy simulation (LES) is less 
expensive and can simulate very complex flow fields in 
turbulence. With LES method, large-scale motion is directly 
calculated but small-scale needs to be modeled by subgrid-
scale (SGS) model. Concerning the subgrid-scale model, it 
seems quite important to know what happened in the 
filtered field for LES from the actual turbulence including 
appearance or disappearance of the tube-like vortical 
structures in resolved or unresolved field. 

Therefore, the purpose of this study is to filter DNS 
velocity field for obtaining the GS (grid-scale) and SGS 
(subgrid-scale) velocity fields in turbulent flow using 
classical filters for LES. Then we identify the grid-scale and 
subgrid-scale coherent structures and discuss the statistics 
of GS and SGS coherent structures in homogeneous 
isotropic turbulence. 
 
2   LARGE-EDDY SIMULATION 
 
2.1   DNS Data Base 

In this study, DNS data of decaying homogeneous 
isotropic turbulence has been used, which is conducted by 
Tanahashi et al. (10) and is calculated by using 1283 grid 
points. Reynolds number based on urms and Taylor 
microscale, λ of the DNS data is Reλ =64.9. 
 
2.2   GS and SGS Velocity Fields 

To obtain the grid-scale (GS) and gubgrid-scale (SGS) 
velocity fields, we have directly filtered the above DNS 
velocity field using two classical filters: Gaussian filter and 
sharp cutoff filter for LES. In LES, a velocity component u 
can be decomposed into two components, one component is 
in the range of low wave-number of energy spectrum, large 
scale of motion, called GS component and is denoted by u , 
and the other component is in the range of high wave-
number of energy spectrum, small scale of motion, called 
SGS component and is denoted by u′ . Their relation can 
be expressed as: 

uuu ′+=                                                          (1) 
The filtering is represented mathematically in physical 
space as a convolution product. (17) The filtered part u  of 
the variable u is defined formally by the relation: 

( ) ( ) ( ) xdxuxxGxu
D

′′∆′−= ∫ , ,                    (2) 

in which G is filter kernel function and i∆  is the filter 
width in i-direction. The dual definition in the Fourier space 
can be obtained by multiplying the spectrum ( )kû  of u(x) 

by the spectrum ( )kĜ  of the kernel G(x) such that, 

( ) ( ) ( ) ,.........2,1,0,ˆˆˆ ±±== kkkk uGu         (3) 

The function Ĝ  is the transfer function associated with the 
kernel G. 
 
2.3   Classical Filters for LES 

In this study, two classical filters are used for 
performing the spatial scale separation. For a filter width 

i∆  in i-direction, these filters in physical space (PS) and 

Fourier space (FS) are written as follows: 
(I)  Gaussian filter: 
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(II)  Sharp cutoff filter: 
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Using the above two filters for LES in the Fourier space, 
one set of DNS data is filtered and the exact GS velocity 
field, u  are obtained. After generating u , we subtract the 
GS velocity field from DNS velocity field and obtain the 
SGS velocity field. That is, the SGS velocity field can be 
obtained by the relation (from Eq.1): 

uuu −=′                                                          (6) 
Filter width plays very important role with filter 

functions in this process. The characteristic filter width 

i∆ is commonly used as the length, approximately 

proportional to the grid interval ∆  in the previous 
researches. (18)(19)(20) The structures represented by the GS 
and SGS velocities consequently depend both on the grid 
interval and on the type of filter employed. In the previous 
studies, (10)(11) it is shown that the mean diameter of the 
coherent fine scale eddy is about 10 times of Kolmogorov 
microscale (η) in turbulent flows. Therefore, in this study, 
the most important filter width, i∆ , is considered as the 
length of Kolmogorov microscale in the DNS field with a 
constant multiplication. Since we are dealing with 
homogeneous isotropic turbulence, the filter width i∆  is 

same in each direction and hereafter it is denoted by ∆ . 
 
2.4   Profiles of the DNS, GS and SGS Velocity Fields 

In the previous study, (21) using several filter widths and 

different Reynolds numbers, it is shown that filter width ∆  
depends on the Reynolds number of the flow, regardless of 
the filter employed. In this study, to obtain the GS and SGS 
velocity fields from DNS field for Reλ =64.9, we have 
considered filter width ∆ =10η, where η is obtained from 
the DNS velocity field. In order to understand the GS 
velocity field from the DNS velocity field, we compared 
DNS velocity with filtered velocity in Fig.1. For this 
purpose we have randomly chosen one-dimensional 
velocity profile in 1x  direction and have plotted 

( )11 xu and ( )11 xu  for ∆ =10η in Fig.1. In all cases we 
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Fig. 1 Sample of filtered and unfiltered velocity fields. 
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Fig. 2 Three-dimensional energy spectra of velocity 
fluctuations. (a) DNS and GS fields, (b) DNS and SGS 
fields. 
 
obtained these one-dimensional profiles for the above two 
filter functions: Gaussian and sharp cutoff filter. Although 

∆ =10η is a small value, but the profiles in Fig.1 suggest 
that the generation of GS velocity field as well as SGS 
velocity filed from this Reλ case is well using both filter 
functions. 

Three-dimensional energy spectra of filtered and 

unfiltered velocity fluctuations for this filter width, ∆ =10η 
are presented in Fig.2, which is calculated by the definition 
written as follows: 

( ) ( ) ( )∑
+≤<−

=

2
1

2
1

*ˆˆ
2
1

kkk

uukE kk                      (7) 

In each case, the GS and SGS spectra are obtained by using 
Gaussian and sharp cutoff filter, and then compared with 
the DNS spectrum. The DNS spectrum shows the power 
decay close to k-5/3. In the previous study, (10) using DNS 
database, it is shown that the energy dissipation rate is 
dominated by the fine scale eddies in homogeneous 
isotropic turbulence, which is beyond the discussion of this 
paper. 

With the sharp cutoff filter, the SGS fields contain the 
velocity due to all the structures with wave number 

∆> πk . On the other hand, full range of wave numbers 

contributes to the SGS velocity in the case of Gaussian 
filter. Fig.2 reveals this difference in behavior for GS and 

 
 

Fig. 3 Contour surfaces of the second invariant of the 
velocity gradient tensor (Q*=0.03) in the DNS field. 
Visualized region is the whole calculation domain. Second 
invariant is normalized by Kolmogorov microscale and 
r.m.s of velocity fluctuations. 
 
SGS spectra using different filters for LES. This figure 
clearly indicates that, when sharp cutoff filter is used, the 
GS spectrum exactly collapsed with DNS spectrum in the 

range of low wave numbers ( ∆≤ πk ), while SGS 

spectrum is restricted in the high wave number range, and 
the contribution of subgrid scale is entirely due to the high 
wave numbers. The behavior of these spectra also confirms 
the accuracy of the filtering process. When Gaussian filter 
is used, the subgrid scales account for a fraction of the total 
(DNS) kinetic energy. Moreover, SGS energy has a 
significant contribution from the low wave numbers (i.e., 
the large scales) as we can see in Fig. 2(b). However, with 

this small ∆ , it seems that GS fields contribute to the large 
part of energy dissipation rate for all filter functions.  
 
3   GS AND SGS COHERENT STRUCTURES 

In order to discuss about GS and SGS coherent 
structures, we notice the tube-like coherent fine scale eddy 
by visualization of flows in the DNS field. The concept 
usually associated with an eddy is that of a region in the 
flow where the fluid elements are rotating around a ‘set of 
points’. Identification of the eddy or vortex from DNS/LES 
database is a very difficult and complex task, requiring 
considerable computational efforts with proper 
identification method. There are several methods for 
identification of the vortical structures in turbulence with 
significant differences (22) and most of them show threshold 
dependence. As we discussed in the introduction, direct 
‘local flow pattern’ (23) can educe coherent structures in 
several flow fields, (10)(11)(12)(14) which shows universal 
characteristics in turbulence. In our previous study, (13) using 
the above method we have identified the coherent fine scale 
eddies and its’ axes without using any thresholds and then 
discussed the spatial distribution of coherent fine scale 
eddies by visualization of axes in homogeneous isotropic 
turbulence. In this study, we use the same method to discuss 
about GS and SGS coherent structures in homogeneous 
isotropic turbulence. 

Fig.3 shows the contour surfaces of normalized second 
invariant of the velocity gradient tensor Q in the DNS field 
for Reλ =64.9. The second invariant of the velocity gradient 
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Fig. 4 Contour surfaces of the second invariant of the velocity gradient tensor in GS and SGS fields obtained from DNS field 
using (I) Gaussian filter and (II) sharp cutoff filter. Visualized region is same as in Fig.3. (a) GS field (Q*=0.02), (b) SGS field 
(Q*=0.01) (c) GS (Q*=0.02) & SGS (Q*=0.01) fields 
 
tensor is defined as: 

( )ijijijij WWSSQ −−=
2
1

,                               (8) 

where Sij and Wij are the symmetric and asymmetric part of 
the velocity gradient tensor Aij. In Fig.3, the visualized 
region is whole calculation domain and the level of the 
isosurface is selected to be Q* =0.03. Hereafter, * denotes 
the normalization by Kolmogorov microscale η and root 
mean square of velocity fluctuations, urms, and for all cases 
η and urms are obtained from the DNS field. The 
normalization of Q by η and urms is due to the fact that the 
diameter and the maximum azimuthal velocity of tube-like 
fine scale structures can be scaled by η and urms

 (10) Fig.3 
shows that lots of coherent tube-like structures are 
randomly oriented in homogeneous isotropic turbulence. 
However, if we increase or decrease the value of Q*, we 
can also show distinct tube-like structures in turbulence, 
little bit different from Fig.3, which means the visualization 
of fine scale structures significantly depends on the value of 
threshold of Q. (13)  

Fig.4 shows the contour surfaces of second invariant of 
the velocity gradient tensor Q in GS and SGS fields 
obtained by using Gaussian and sharp cutoff filters with 
filter width ∆ =10η. The visualized region and viewpoint 
in Fig.4 is same as in Fig.3 for all cases. The level of the 

isosurface for all cases in Fig.4 is selected to be Q* =0.02 
for GS fields and Q* =0.01 for SGS fields. As we discussed 
above, the visualization of coherent structures depends on 
the threshold value of Q and we do not concern the strength 
of the structures, therefore, in this visualization we 
considered these different values for Q for different fields 
only to show the vortical structures in GS and SGS fields 
by visualization. Fig.4 clearly indicates that GS and SGS 
fields contain lots of distinct tube-like structures somewhat 
similar to DNS fields, which can best be defined as 
coherent structures or eddies in turbulence. (13) It is also 
clear that the size or length of GS structures in all cases 
seems to be larger than SGS structures. 

It is known from the classical idea of fluid dynamics 
that several small-scale structure together form a large-scale 
structure, i.e., several small (SGS) structures entirely lie 
inside a large (GS) structure in the order of its size. 
However, Fig.4(c) clearly indicates that GS (green) and 
SGS (red) structures are quite distinct and unique in 
turbulence. 
 
4. CHARACTERISTICS OF GS AND SGS 
COHERENT STRUCTURES 
 
4.1   Identification Scheme 

Since for visualization of flows in Figs.3-4, we use 
positive second invariant Q and we can see the existence of 
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many tube-like coherent structures in DNS, GS and SGS 
fields in homogeneous isotropic turbulence. Obviously 
these tube-like structures contain at least one local 
maximum of Q on its’ axis. With this local Q maximal, 
Tanahashi et al (10) have clarified the statistics of coherent 
fine scale structures in homogeneous isotropic turbulence. 
This method can best be used to study on the GS and SGS 
coherent structures in turbulence. Using this method, we 
can obtain a point on the cross-section on the axis of 
coherent structures with local Q maximum. The 
identification method consists of the following steps:  
Step (a): Evaluation of Q at each collocation point from the 

results of DNS, GS and SGS fields. 
Step (b): Probability of existence of positive local 

maximum of Q near the collocation points is 
evaluated at each collocation point from Q 
distribution. Because the case that a local maximum 
of Q coincides with a collocation point is very rare, 
it is necessary to define probability on collocation 
points. 

Step (c): Collocation points with non-zero probability are 
selected to survey actual maxima of Q. Locations of 
maximal Q are determined within the accuracy of 
10-6 in terms of relative error of Q by applying a 4th 
order Lagrange-interpolation polynomial to DNS, 
GS and SGS data. 

Step (d): A cylindrical coordinate system (r, θ, z) is 
considered by setting the maximal point as the origin. 
The z direction is selected to be parallel to the 
vorticity vector at the maximal point. The velocity 
vectors are projected on this coordinate and 
azimuthal velocity uθ is calculated. 

Step (e): Point that has small variance in azimuthal velocity 
compared with the surroundings is determined. If the 
azimuthal velocities at r =1/5 computational grid 
space show same sign for all θ, that point is 
identified as the center of the swirling motion. 

Step (f): Statistical properties are calculated around the 
points. 

 
4.2   Statistics of Coherent Structures 

Figs.5-7 show the mean azimuthal velocity profile of 
coherent structures in DNS, GS and SGS fields for two 
filter functions. In these figures, r represents the radius of 
the coherent structures, which is determined by the distance 
between the center and the location where the mean 
azimuthal velocity reaches the maximum value. Mean 
azimuthal velocity profiles in all cases are normalized by 
urms and η, which are obtained from the DNS field. In 
Figs.5-7, symbols represent an azimuthal velocity of a 
Burgers’ vortex, which is written as follows: 






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
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
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exp1
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2r
r
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zvz α= ,                                                          (10) 
where Γ is the circulation of the Burgers’ vortex tube and α 
is a stretching parameter. Using DNS database, (10)(14) it was 
shown in the previous study that the mean azimuthal 
velocity profile of coherent fine scale structures in 
homogeneous isotropic turbulence and turbulent mixing 
layer could be approximated by a Burgers vortex. They (10)  
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Fig. 5 Mean azimuthal velocity profile of the coherent 
structures in the DNS field, normalized by Kolmogorov 
microscale and r.m.s of velocity fluctuations. Symbols 
represent velocity profile of a Burgers’ vortex and error bars 
denote variances of azimuthal velocity. 
 
also have shown that the mean diameter of the coherent fine 
scale structures in homogeneous isotropic turbulence is 
about 10η and the maximum of mean azimuthal velocity is 
about half of urms, and these characteristics of coherent 
structures are independent on Reynolds numbers of the flow. 
Fig.5 confirms these behaviors of the coherent structures 
for this Reynolds number case. Our interest is to discuss the 
characteristics of GS and SGS coherent structures 
comparing with the DNS results, hence, we have shown 
approximation of coherent structures in the GS and SGS 
fields with that of the Burgers’ vortex in Figs.6-7. 

The mean azimuthal velocity profile of GS-Gaussian 
coherent structures in Fig.6 (a) shows a good agreement 
with that of Burgers’ vortex in the whole range as it as in 
DNS field. In Fig.7 (a), the agreement of mean azimuthal 
velocity profile for GS-sharp cutoff coherent structures with 
Burgers’ vortex is good for relatively small distance 
(r*<12η), that is, the Burgers’ vortex profile does not 
collapse with mean azimuthal velocity profile for the large 
distance. For Gaussian filter, the contribution of GS and 
SGS velocity fields are obtained from the whole region of 
DNS velocity field, while sharp cutoff filter separates the 
DNS velocity field in GS and SGS fields at the cutoff wave 
number. Maybe, that is one reason of these differences in 

Fig. 6(a) and 7(a). Moreover, filter size ∆ =10η is 
relatively small. For large filter width, the large-scale 
structures, i.e., most of the coherent structures with large 
diameter accumulate in the GS field. Using large filter 
width, we have also seen (not shown) that the 
approximation of mean azimuthal velocity profile by 
Burgers’ vortex becomes quite good for relatively large 
diameter tube like coherent structures in GS–sharp cutoff 
field as well as in GS-gaussian filed. On the other hand, 
although not in hole range, but Figs. 6(b) and 7(b) also 
show that the approximation of mean azimuthal velocity 
profile of SGS coherent structures in both SGS-Gaussian 
filed and SGS-sharp cutoff filed by Burgers, vortex is well 
in a certain range, and shows almost similar behavior for 
both filter functions. These results suggest that mean 
azimuthal velocity profile of coherent structures in LES can 
be approximate by that of a Burgers’ vortex as well as in 
DNS. 

The comparisons of normalized mean azimuthal 
velocity profile of coherent structures in DNS, GS and SGS 
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Fig. 6 Same as Fig.5, but (a) GS field and (b) SGS field 
obtained by using Gaussian filter. 
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Fig. 7 Same as Fig.5, but (a) GS field and (b) SGS field 
obtained by using sharp cutoff filter. 
 
fields for different filter functions are shown in Fig.8. Mean 
azimuthal velocity profile of GS structures for different 

filter functions with this filter width, ∆  collapse with DNS 
profile at r*=20η (Fig.8 (a)). On the other hand, mean 
azimuthal velocity profile of SGS structures for different 
filter functions collapse each other at r*=10η (Fig.8 (b)), 
but not with DNS profile. In all cases, the maximum of 
mean azimuthal velocity of GS structures is higher than 
DNS structures, and of SGS structures is lower than DNS 
structures. The maximum of mean azimuthal velocity and 
diameter of coherent structures are about 0.6urms and 15η in 
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Fig. 8 Comparison of mean azimuthal velocity profile (vθ) 
of the DNS, GS and SGS coherent structures. (a) DNS and 
GS fields, (b) DNS and SGS fields. In all cases, mean 
azimuthal velocity profile is normalized by Kolmogorov 
microscale and r.m.s of velocity fluctuations obtained from 
DNS field. 
 
GS-Gaussian field, and 0.8urms and 20η in the GS-sharp 
cutoff field. On the other hand, the maximum of mean 
azimuthal velocity and diameter of coherent structures are 
about 0.2urms and 5η in SGS-Gaussian field, and 03urms and 
7η in the SGS-sharp cutoff field. The maximum of mean 
azimuthal velocity for GS structures in the Gaussian field is 
close to the DNS field, but the maximum of mean 
azimuthal velocity for GS structures in the sharp cutoff 
field is larger than the DNS field. In actual LES, GS 
structures can be identified but SGS structures need to be 
model by SGS model. Coherent structures have high and 
thin energy dissipation regions around them and these 
regions contribute total energy dissipation in turbulence. (24) 
Since in SGS fields we can see the existence of coherent 
structures somewhat similar to DNS field, of course very 
small in size, this result is very worthy to develop a 
structures base SGS model for LES. 

The probability density functions (pdf) of diameter of 
tube-like coherent structures in DNS, GS and SGS fields, 
which are normalized by η obtained from DNS field are 
shown in Fig.9 for different filter functions. It is clear that 
the peak of pdf of GS-structures in all cases do not coincide 
with each other or with DNS profile. Moreover, the peak of 
pdf of GS structure in the GS-sharp cutoff field shows 
higher value than in the GS-Gaussian field for this filter 
width. It is also revealed that the small diameter tube-like 
coherent structure in GS field is rare in all cases and large 
diameter of SGS structures reaches about 25η. However, 
the collapse of pdf of diameter in the SGS fields is good, 
and the peak of pdf for SGS profile increases from the DNS 
profile for all filter functions. 

Fig.10 shows the pdf of maximum of mean azimuthal 
velocity of coherent structures in the same DNS, GS and 
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Fig. 9 Probability density function of diameter of coherent 
structures normalized by Kolmogorov microscale. (a) DNS 
and GS fields, (b) DNS and SGS fields. 
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Fig. 10 Probability density function of the maximum of 
mean azimuthal velocity of coherent structures normalized 
by r.m.s of velocity fluctuations. (a) DNS and GS fields, (b) 
DNS and SGS fields. 
 
SGS fields using different filter functions, which is 
normalized by urms. It is revealed that, GS-Gaussian profile 
collapse with DNS profile well in the whole range. The 
profile in the GS-sharp cutoff field is smaller than DNS 
profile at small azimuthal velocity and larger than that at 
large azimuthal velocity of the tube-like coherent structures. 
The maximum value of mean azimuthal velocity in GS and 
DNS fields seems to be same. On the other hand, SGS 
profiles of mean azimuthal velocity for both filter functions 

do not coincide each other or with DNS profile. The 
maximum value of mean azimuthal velocity profile is lower 
than 1.5urms, i.e., about half of DNS value. Using large and 
different filter width, we have seen (not shown) that the pdf 
of SGS profile becomes very close with DNS profile and 
the maximum value in the SGS filed never exceed the 
maximum value in the DNS field. That is, the 
characteristics of GS and SGS coherent structures 
significantly depend on the filter widths. This behavior is 
interesting to study on the coherent structure in actual LES 
or to develop some LES modeling based on the coherent 
structures in turbulence. In the previous study, (10)(14) it was 
shown that the coherent fine scale structures could be 
scaled by Kolmogorov microscale and r. m. s of velocity 
fluctuations. The above results in the present study also 
suggest that the GS and SGS coherent structures may 
possible to scale by η and urms as well as in DNS. 
 
5   CONCLUSIONS 
 

In this study, GS and SGS coherent structures in 
homogeneous isotropic turbulence are identified. The GS 
and SGS velocity fields are obtained by filtering the DNS 
velocity field using classical filters for LES. By visualizing 
the contour surfaces of second invariant Q in GS and SGS 
fields as well as in DNS field, it is shown that GS and SGS 
fields itself contain lots of distinct tube-like coherent 
structures in homogeneous isotropic turbulence, which 
indicates that the DNS field contain multi-scale structures 
in turbulent flow. The characteristics of these GS and SGS 
coherent structures are somewhat similar to DNS coherent 
structures. These GS and SGS coherent structures can be 
scaled by η and urms as well as in DNS. 
 
6   REFERENCES 
 
(1) Townsend, A. A., “On the fine-scale structure of 

turbulence”, Proc. R. Soc. Lond., A208(1951), pp. 
534-542. 

(2) Tennekes, H., “Simple model for the small-scale 
structure of turbulence”, Phys. Fluids, 11(1968), No. 3, 
pp. 669-671. 

(3) Lundgren, T. S., “Strained Spiral Vortex Model for 
Turbulent Fine Structure”, Phys. Fluids, 25(1982), pp. 
2193-2203. 

(4) Pullin, D. I. and Saffman, P. G., “On the Lundgren-
Townsend Model of Turbulent Fine Scales”, Phys. 
Fluids, A5(1993), pp. 126-145. 

(5) Saffman, P. G. & Pullin, D. I., “Anisotropy of the 
Lundgren-Townsend Model of Fine-scale Turbulence”, 
Phys. Fluids, A6(1994), pp. 802-807. 

(6) She, Z. –S., Jackson, E. and Orszag, S. A., 
“Intermittent Vortex Structures in Homogeneous 
Isotropic Turbulence”, Nature, 344(1990), pp. 226-
228. 

(7) Vincent, A. and Meneguzzi, M., “The spatial structure 
and statistical properties of homogeneous turbulence”, 
J. Fluid Mech., 225(1991), pp. 1-20. 

(8) Jimenez, J., Wray, A. A., Saffman, P. G. and Rogallo, 
R. S., “The Structure of Intense Vorticity in Isotropic 
Turbulence”, J. Fluid Mech., 255(1993), pp. 65-90. 

(9) Vincent, A. & Meneguzzi, M., “The dynamics of 



 
 

Copyright © 2001 by JSCFD 8

vorticity tubes in homogeneous turbulence”, J. Fluid 
Mech., 258(1994), pp. 245-254. 

(10) Tanahashi, M., Miyauchi, T. and Ikeda, J., “Scaling 
law of coherent fine scale structure in homogeneous 
isotropic turbulence”, Proc. of 11th Symp. on 
Turbulent Shear Flows. 1(1997), pp. 4-17-4-22 . 

(11) Tanahashi, M., Iwase, S., Uddin, M. A. and Miyauchi, 
T., “Three dimensional features of coherent fine scale 
eddies in turbulence”, Turbulence and Shear Flow 
Phenomena-1 1st Int. Symp., Santa Barbara, California, 
Sep. 12-15(1999)., pp. 79-84. 

(12) Tanahashi, M., Uddin, M. A., Iwase, S. & Miyauchi, 
T., “Three dimensional feature of coherent fine scale 
eddies in homogeneous isotropic turbulence”, Trans. 
JSME, 65-B(1999), No. 638, pp. 3237-3243. 

(13) Uddin, M.A., Tanahashi, M., Iwase, S. and Miyauchi, 
T., “Visualization of Axes of Coherent Fine Scale 
Eddies in Homogeneous Isotropic Turbulence”, the 3rd 
Paci. Symp. on Flow Visualization and Image 
Processing (PSFVIP-3), Maui, Hawaii, March.18-21, 
CD-ROM Proc., C3-2(2001), No. F3204. 

(14) Tanahashi, M., Miyauchi, T. and Matsuoka, K., 
“Coherent fine scale structures in temporally 
developing turbulent mixing layers”, Proc. 2nd Int. 
Symp. on Turbulence, Heat and Mass Transfer, Vol. 
2(1997), pp 461-470. 

(15) Tanahashi, M., Das, S. K., Shoji, K. and Miyauchi, T., 
“Coherent fine scale structure in turbulent channel 
flows.” Trans. JSME, Vol. 65-B(1999), No. 638, pp. 
3244-3251. 

(16) Tanahashi, M., Tsujimoto, T, Karim, M. F., Fujimura, 
D. and Miyauchi, T., “Anisotropy of MHD 
homogeneous turbulence”. Trans. JSME, Vol. 65-
B(1999), No. 640, pp. 3884-3890. 

(17) Leonard, A. “Energy Cascade in Large-eddy 
Simulations of Turbulent Fluid Flows”, Adv. in 
Geophys., 18A(1974), pp. 237-248. 

(18) Piomelli, U., Yu, Y. and Adrian, R. J., “ Subgrid-scale 
Energy Transfer and Near-wall Turbulence Structure”, 
Phys. Fluids, 8(1) (1996), pp. 215-224. 

(19) Piomelli, U., Moin, P. and Ferziger, J. H., “ Model 
Consistency in Large Eddy Simulation of Turbulent 
Channel Flows”, Phys. Fluids, 31(7)(1988), pp. 1884-
1891. 

(20) Horiuti, K., “A Proper Velocity Scale for Modeling 
Subgrid-scale Eddy Viscosities in Large Eddy 
Simulation”, Phys. Fluids A5(1)(1992), pp.146-157. 

(21) Uddin, M.A., Tanahashi, M., Nobuyuki, T., Iwase, S. 
and Miyauchi, T., “Grid-scale and Subgrid-scale 
Eddies in Turbulent Flows ~ a Priori Test”, the 4th Int. 
Conf. on Mech. Eng. (ICME2001), Dhaka, 
Bangladesh, Dec. 26-28(2001), in press. 

(22) Jeong, J. and Hussain, F., “On the Identification of a 
Vortex”, J. Fluid Mech., 285(1995), pp. 69-94. 

(23) Chong, M.S., Perry, A.E. and Cantwell, B.J., “A 
General Classification of Three-dimensional Flow 
Fields”, Phys. Fluids A2(1990), pp. 765-777. 

(24) Tanahashi, M., Miyauchi, T. & Yoshida, T., 
“Characteristics of small scale vortices related to 
turbulent energy dissipation”, Transport Phenomena 
in Thermal Fluid Engineering, Vol. 2(1996), pp. 1256-
1261. 


