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The objective of this study is to investigate the very large coherent structures observed in or above the logarithmic
layer of a wall turbulence. LES is a very strong tool for this purpose because it can simulate turbulence at high
Reynolds number with large analysis region. In this study we especidly focus on the effect of the thermal
stratification on the very large structures.  So called open channel, in which upper wall is supposed to be free dlip,
was adopted in this study and the Reynolds number normalized by friction velocity and channel width was set to
10,000. We have found that the large scale structure was similar to the streak structures observed at the vicinity of
the wall but its size was hundreds times larger than the small structures. The large structure was also strongly
affected by the thermal stratification and the large structure was destroyed at a certain stably stratified condition, in
which small organized structures at the vicinity of the wall was till exist.
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Fig.1 Mean velocity profiles
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Fig.2 GS turbulent intensity profiles
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Fig.3 Pre-multiplied power spectrum of streamwise(left) and spanwise(right) velocity fluctuation for spanwise direction

LES

DeGraaff

Retr=19400

y+=60

1000

K.=1/4,

y+=10
Az+=200

DNS

LES

Copyright © 2001 by JSCFD



Stable(Ric~0.1)

Pdeg@ra]

B

Q
s oy
o
—
1
+
>
=]
=]
=0
L

y+

10000
10470

Fig.4 Snapshot of streamwise velocity fluctuation on x-z plane
paralel to the wall (white:u’/ur=6.0; black:u'/ut=-6.0, left:
neutral condition; right: stable condition, flow from right to
left)
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Fig.5 Snapshot of streamwise velocity fluctuation on y-z plane
norma to the mail flow direction. (white:u’'/ut=6.0;

+<100 black:u’/ut=-6.0, left: neutral condition; right: stable
y condition, flow from right to left)
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