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An efficient and highly accurate way to systematically reproduced the inflow boundary profiles for the mean flow variables, 
as well as the turbulent quantities in one-equation and two-equation turbulence-models, from given external flow 
conditions and one boundary layer parameter, is described. The reproduced profiles are checked against both experimental 
results and numerical solution of boundary layer equations. Theoretical analysis shows that a new form of density-weighted 
velocity, rather the Van Driest density-weighted velocity, obeys the linear-law at the viscous sublayer in a compressible 
turbulent boundary layer. Especially for nonadiabatic wall at hypersonic Mach numbers, where there are large density 
gradients, these two kinds of density-weighted velocity could differ considerably. It is also shown that power-law fitting for 
the streamwise velocity gives unacceptable profile in the viscous sublayer. For first time, an efficient way to specify the 
normal velocity profile is proposed and tested. The reproduced normal velocity at boundary layer edge is found to agree 
remarkably well with numerical solution of boundary layer equations. 

 
 

Nomenclature  
ae = sound speed at boundary layer edge 
cf = local skin-friction coefficient, τw/(ρeue

2/2)  
cp = specific heat at constant pressure 
H = shape factor or intermediate variable in Eq. (7) 
k = turbulent kinetic energy per unit mass 
Lref = reference length scale 
M = Mach number 
n =exponent in the power-law for molecular viscosity 
N =exponent in the power-law fit for streamwise velocity 
P = pressure 
Prt = turbulent Prandtl number, 0.9 
q = heat flux 
Re|m  = unit Reynolds number per meter  
Reθ  = Reynolds number based on momentum thickness, ρe-

ueθ/µe 
Reδ2  = empirically-chosen Reynolds number,  

  based on viscosity at the wall, ρeueθ/µw 
T = temperature 
u   = Farve-averaged streamwise velocity 
u+ = u/uτ  
uτ  = friction velocity, (τw/ρw)1/2 
uc = transformed velocity according to Eq. (2) or (10) 
v   = Farve-averaged normal velocity 
x = streamwise coordinate 
y = distance above the wall 
y+ = yuτ/νw 
∆x = streamwise integration step 
ε = dissipation rate 
η = y/δ  
δ  = boundary layer nominal thickness 

δ*  = displacement thickness 
Π = profile parameter in Coles’ formula 
θ  = momentum thickness  
µ  = molecular viscosity 
µt = turbulent eddy viscosity 
ν = kinematic viscosity 
ν~  = modeled quantity in Spalart-Allmaras’s turbulence 

model 
ρ = mass density 
τ = shear stress 
τxy = principal turbulent shear stress 
ω  = specific dissipation rate 
 
Subscripts 
0 = stagnation condition 
e   = boundary layer edge 

w = wall 
 
Abbreviation 
CFD = computational fluid dynamics 
BL = boundary layer 

 
  

1. Introduction 
 

Much of research efforts in CFD have been devoted to the 
grid generation, discretization of the governing equations, and 
the solution of the resultant system of algebraic equations. 
Attention has also been paid to the posing of appropriate 
numerical boundary conditions around the solution domain. 
While the treatment of boundary conditions at nearly uniform 
inflow, wall, farfield, and outflow1-5 has reached a high degree 
of sophistication, the specification of solution variables across 
compressible turbulent boundary layer at inflow is rather crude. 
Common practice simply uses the power-law for streamwise 
velocity, with the exponent fitted from experimental results. 
The temperature profile is obtained via Crocco integral, and the 
density profile through equation of state with the assumption of 
constant pressure across the boundary layer. Empirical 
formulas, simulating typical profiles in a boundary layer, for 
the turbulence kinetic energy, turbulence dissipation rate and 
specific dissipation rate are employed in CFL3D6. Zero normal 
velocity is usually assumed for convenience. However, it is 
demonstrated7 the zero normal velocity assumption would lead 
to spurious expansion and compression waves near the inflow 
region.  

One reason why people are not much disturbed by such 
crude treatment is the hope that turbulent boundary layer would 
eventually develop to the equilibrium state by itself at some 
distance downstream. While this might be the case, it 
nonetheless requires extra length to be included in the inflow 
region of the solution domain. And it is not clear how long this 
development region should be. To reduce the size of the 
solution domain and thereby reducing the computational 
overhead, numerical solutions of boundary layer equations at 
the station that matches the integral parameters from 
experiment is used by Zhang8  as the inflow boundary 
conditions. This approach, while being highly accurate, is not 
quite efficient.  

In this paper, based on the works in Ref. 9, an efficient and 
accurate way to systematically specify the inflow profiles for 
the mean flow variables, as well as the turbulent quantities in 
one-equation and two-equation turbulence-models, will be 
described. Theoretical analysis will show that a new form of 
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density-weighted velocity, rather than the Van Driest 
density-weighted velocity, obeys the linear-law in the viscous 
sublayer for high-speed flows. It will also be shown that 
power-law fitted stream-wise velocity distribution is 
unacceptable in the viscous sublayer. In addition, for the first 
time to the authors’ knowledge, a way to specify the normal 
velocity profile will be proposed and tested. 
 
 
2. Specification of Major Mean Flow Profiles 
 

A number of theories10-18 has been developed to determine 
skin-friction and specify velocity profile for compressible 
turbulent boundary layers. The general consensus is that the 
Van Driest I transformation12 is a good fit to the experimental 
data of the velocity profile in the inner layer, and the Van Driest 
II transformation17 offers a good fit to the experimental data of 
skin friction. Two limitations of Van Driest I transformation are 
that it is only valid for the log-law region and for turbulence 
Prandtl number (Prt) equal to one. The velocity profile of 
Huang et. al16 is an extension of the Van Driest I transformation 
applied to Coles’ profile11 that includes the sublayer and the 
wake regions, and the transformation is modified to be valid for 
Prt equal to 0.9. This profile family is a good fit to the boundary 
layer velocity profiles for a wide range of Mach and Reynolds 
numbers. For completeness, the procedure proposed by Huang 
et. al. will be briefly described first. Its modifications and 
extensions by the present authors are then followed. 

Experimental evidence19 and theoretical analysis12 suggest 
that the law-of-the-wall and the law-of-the-wake are 
transferable from incompressible flow to the compressible flow, 
provided that the velocity is defined by the density-weighted 
transformation and the wake parameter is correlated with 
empirically-chosen Reynolds number Reδ2. The law-of-the-wall 
for the inner region, including the linear-law region, the buffer 
region and the log-law region, combined with Coles’ 
law-of-the-wake for the outer region reads: 
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The wake parameter Π can be obtained from the curve fitting 
formula due to Cebeci and Smith20: 
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As the pressure is nearly constant across the boundary layer, 
the density ratio in Eq. (2) can be replaced by temperature ratio, 
which can be obtained by neglecting the convection terms and 
integrating the energy equation near a solid surface,  
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The above equation establishes the relationship between Tw and 
qw/τw. 

The integration of Eq. (2) yield the Van Driest transformation 















−






 +

= −−

D
A

D
uA

Buc
11 sinsin  (6) 

where 

BAD

PrTcB
qA

twp

ww

+=

=
=

2

/2
/τ

 

The inverse of Eq. (6) is  
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To obtain cf and the corresponding boundary layer profiles 
for a given boundary layer displacement thickness or 
momentum thickness, the following iterative procedure needs 
to be performed: 
1) Given δ* (or θ), guess δ*/δ, θ/δ and uτ (or θ/δ and uτ). 
2) Calculate Reδ2= ρeueθ/µw and find Π from Eq. (4). 
3) Calculate yδ

+= uτ δ/νw and obtain uc,δ
+ from Eq. (1). 

4) Obtain the nontransformed dimensionless velocity uδ
+ 

from Eq. (7). 
5) Update uτ =ue/ uδ

+ and solve for cf = 2(Te/Tw)(uτ/ue)2. 
6) Tabulate u as a function of η=y/δ using Eqs. (1) and (7). 
7) Update δ*/δ, θ/δ (or θ/δ*) by performing the following 

integration numerically: 
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where ρ/ρe is replaced by Te/T with T obtained from Eq. (5).  
Steps 1 to 7 are repeated until the solution converges. 

 
Three modifications to the above procedure are proposed to 

make it more convenient and more accurate. 
A. Explicit expression for the wall velocity distribution due 

to Musker21 
Eq. (1) involves integration and is not convenient to use. In 

addition, there is a discrepancy in the slope condition at the 
edge of the boundary layer, as discussed by Cornish22, Bull23,  
and others. Instead, Musker’s explicit expression for the 
law-of-the-wall at inner region and law-of-the-wake at outer 
region, satisfying the four boundary conditions: y=0, uc=0 and 

+
cdu /dy+=1; y = δ, uc = uce, and duc/dy = 0, can be used to 

facilitate the iterative procedure. 
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B. The velocity distribution at the viscous sublayer 
Velocity distribution at the viscous sublayer for compressible 

turbulent boundary layer needs further examination. In Coles’ 
original proposal for Eq. (1), the viscous sublayer is neglected. 
Huang et. al.16 found that it is important to include the sublayer 
contribution for high-speed flows because the sublayer 
becomes thicker and may occupy a substantial portion of the 
whole boundary layer at hypersonic Mach number. In using Eq. 
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(1) as the base for their profile family, it is actually assumed 
that Van Driest transformed velocity, Eq. (2), obeys the same 
linear-law as that in the incompressible case. They 
acknowledge that they cannot claim detailed reliability of their 
profile family in the sublayer. As sublayer data for 
compressible flows are scarce, especially for large heat transfer 
rates, theoretical analysis will be pursued to examine this 
problem in the following.  

As in the incompressible turbulent boundary layer, there is a 
thin layer of constant total shear stress, called the inner layer, in 
compressible turbulent boundary layer. In the turbulent core 
region, the laminar shear stress is dominated by the Reynolds 
stress and hence can be neglected. By assuming Prt equal to 
one and invoking Prandtl’s mixing length theory, Van Driest12 
showed that the transformed velocity obeys the same log-law as 
that in the incompressible case. In the immediate vicinity of 
wall, due to the damping of the wall, Reynolds stress can be 
neglected. The laminar shear stress equals to the shear stress at 
wall: 
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Integrating and using power-law for molecular viscosity: 
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As before, the temperature ratio in Eq. (9) can be replaced by 
the density ratio: 
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It indicates that the velocity transformed according to Eq. (9) 
or (10) rather than Eq. (2) obeys the linear-law for high-speed 
flows. For adiabatic wall, the temperature, hence the density, is 
nearly constant in the viscous sublayer, therefore, these two 
kinds of transformation give essentially the same results. 
However, for non-adiabatic wall, especially for large heat 
transfer at hypersonic Mach number, large density gradient 
exists at the sublayer. These two kinds of transformation can be 
quite different. Therefore, for non-adiabatic wall, Eq. (9) or 
(10) should be invoked to modify the streamwise velocity after 
obtaining uτ through the iterative procedure described above. 
For a more accurate streamwise velocity distribution, 
Sutherland’s law for molecular viscosity can be used instead of 
the power law in Eq. (9).  

The actual calculation consists of the following three steps.  
1) Determine uτ through the iterative procedure. 
2) Substitute the Crocco’s integral, Eq. (5), into Eq. (9), 

integrate it numerically, thereby establish y as a tabulated 
function of u.  

3) Interpolate this tabulated function to find u at the desired 
value of y. 

 
C. Reproduce velocity distribution from boundary layer 
thickness δ 

In the situation where the boundary layer thickness δ is 
known or provided, rather than δ* or θ, the following five steps 
could replace the first five steps in Huang’s algorithm: 
1) Given δ, guess θ and uτ, and calculate τw. 

2) Calculate uce from Eq. (6), calculate Reδ2= ρeueθ/µw and 
find Π from Eq. (4). 

3) Calculate Reδ,w= ρwuceδ/µw. 
4) Solve for yδ

+ from Reδ,w= (uce/ uτ)(ρw uτδ/µw )=ucδ
+yδ

+and 
Eq. (8). 

5) Update uτ = yδ
+µw /(ρwδ), and solve for cf = 

2(Te/Tw)(uτ/ue)2. 
 

To test the effectiveness of these modifications in 
reproducing the compressible turbulent boundary layer profiles, 
the experimental results in Ref. 18 is chosen as benchmark. The 
external flow conditions are as follows: 
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Fig. 1 compares the streamwise velocity profiles reproduced 
from given θ or δ against that measured from experiment. The 
reproduced cf, δ or θ are compared with the experimental 
results in Table 1. 

Fig. 2 shows the reproduced density and temperature profiles 
across the boundary layer. It has to be noted that any usage of 
Crocco’s integral, even with the inclusion of recovery factor to 
take into account the realistic turbulent Prandtl number, implies 
that velocity boundary layer thickness equal to temperature 
boundary layer thickness, which is not true for compressible 
flows, especially for hypersonic flows. 

Fig. 3 compares the streamwise velocity distribution, in wall 
unit, in the viscous sublayer. The solid line depicts the 
streamwise velocity distribution according to Eq. (10), while 
the dashed curve depicts the same distribution but transformed 
according to Eq. (2). It is clear that difference of about 10% at 
the outer edge of viscous sublayer (y+=5) exists between the 
two transformations. Although the distribution according to 
Van Driest transformation still closely resembles a straight line, 
the slope is quite different from that in incompressible case. 

As noted in the introduction, it is common practice in 
experiment to fit velocity distribution across the boundary layer 
to power functions. In CFD, power-law velocity distribution is 
often used as a convenience to set the inflow streamwise 
velocity profile. However, it has to be pointed out that 
power-law is only approximately applicable to the outer part of 
the boundary layer. In the immediate vicinity of the wall, 
power-law assumption will result in qualitatively incorrect 
velocity distribution. In fact, at the wall, the normal derivative 
of streamwise velocity according to the power-law is singular. 
Two-equation turbulence models usually require the y+ at the 
first grid point be less than 1, and there should be several grid 
points within the viscous sublayer, if wall-function approach is 
not used. In such a situation, the streamwise velocity 
distribution near the wall should be determined through the 
iterative procedure described above, rather than using 
power-law fitting. Fig. 4 compares the velocity distributions in 
sublayer, in wall unit, obtained from experimentally fitted 
power-law and that reproduced from the law-of-the-wall as 
analyzed in the subsection B. It is clear that the distribution 
obtained from the power-law is totally unacceptable in the 
viscous sublayer. 
 
 
3. Specification of Normal Velocity Profile 
 

Normal velocity within boundary layer is deemed 
sufficiently small and usually assumed to be zero for 
convenience. However, Orkwis et. al.7  demonstrate in the 
simulation of consecutive flat plates that spurious shock and 
expansion waves will be generated as a result of zero normal 
velocity assumption in the inflow profile for the second plate. 
To the authors’ limited knowledge, there has been no efficient 
way of specifying normal velocity profile for compressible 
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turbulent boundary layer in open literature. In this paper, by 
incorporating continuity equation and integral momentum 
equation with the iterative procedure in section II, a way to 
determine normal velocity profile is proposed and tested 
against boundary layer solution. 

The Farve-averaged[24] continuity equation for steady 
compressible flow reads 

0=
∂
∂

+
∂

∂
y
v

x
u ρρ

 (11) 

It follows that if the density and streamwise velocity profile 
at two closely located stations are known, the normal velocity 
profile can be obtained through the integration of Eq. (11). It is 
already shown in section II that the density and streamwise 
velocity profile at a station can be efficiently reproduced, with 
good accuracy, as long as the external flow conditions and one 
boundary layer parameter at that station are provided. The 
question left is how to find the density and streamwise velocity 
profile at the next station. For this purpose, momentum integral 
equation for a boundary layer over flat plate under 
zero-pressure gradient can be employed. 

2
fc

dx
d

=
θ

 (12) 

The procedure to specify normal velocity profile consists of 
the following steps: 
1) Given the external flow conditions and one integral 

parameter, say, boundary layer momentum thickness θ at 
one station, calculate the density, streamwise velocity 
profile, and skin friction coefficient c f  at that station 
through the algorithm described in section II. 

2) Determine the boundary layer momentum thickness at the 
next station through the integration of Eq. (12). 

3) Calculate the density, streamwise velocity profile at the 
new station in the same manner as in step 1. 

4) Determine the normal velocity profile through the 
integration of Eq. (11). 

 
To check the effectiveness of the above procedure, the sonic 

flow over an isothermal flat plate, employed by Wilcox25 to 
instruct the usage of his boundary layer solution program 
EDDYBL, is chosen as benchmark. The external flow 
conditions are as follows: 
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The temperature at wall is 242K. The station chosen for 
comparison has cf = 2.704×10-3, and θ =1.527×10-3m.  

The normal velocity profile is not an output in Wilcox’s 
program. However, the normal velocity at the boundary layer 
edge (ve) can be obtained from the integration of continuity 
equation using the solution of boundary layer equations at two 
adjacent stations. The value is found to be 0.6395m/s, and can 
be taken as a close approximate to the exact value. The 
corresponding value reproduced from the proposed procedure 
is 0.673m/s. It is remarkable that the difference is only about 
5% of the exact value, considering the fact that ve is only about 
0.2% of the freestream velocity. The reproduced normal 
velocity profile is shown in Fig. 5. The comparison of the 
reproduced profiles for density, streamwise velocity, and 
temperature with the boundary layer solutions, is shown in Fig. 
6. Comparison of skin friction coefficient, shape factor, and 
normal velocity at boundary layer edge is listed in Table 2. 

A word of caution for the choice of streamwise step ∆x in the 
integration of Eq. (12) is in order. It should neither be too large, 
to incur excessive discretization error, nor be too small, to incur 
round-off error. In the example above, non-dimensionalized ∆x 
from 0.01 to 0.5 gave essentially the same results. 

 
4. Specification of Turbulence Quantity Profiles 
 

With the mean flow profiles of density, velocity, and 
temperature available, turbulent quantity profiles can be 
determined either from algebraic turbulence models, from 
experimentally established laws, or from their definitions in 
turbulence models. 
 
1) Turbulent viscosity profile can be readily calculated with 

any simple algebraic turbulence model, say 
Baldwin-Lomax’s model26.  

2) For the one-equation turbulence model of 
Spalart-Allmaras27, the modeled quantity is related to the 
turbulent viscosity via an algebraic equation, hence can 
be determined from the solution of that equation.  

3) For two-equation turbulence models28,29,30, first the 
principal turbulence shear stress(τxy) is calculated as the 
product of the turbulent viscosity and the strain rate of the 
mean flow (neglecting velocity derivative along the flow 
direction). Then, turbulent kinetic energy k can be 
determined through the experimentally established 
relation31τxy  = ak , where a, the so-called structural 
parameter, has a value of about 0.3.  

4) The turbulence dissipation rate ( ε ) or specific 
dissipation rate (ω) can be deduced from k and turbulent 
viscosity according to their relationship in the turbulence 
models.  

5) Within the viscous sublayer, there is no proportionality 
between (τxy) and k. Instead, asymptotic results from 
Taylor series expansion and Navier-Stokes equations 
applied in the vicinity of wall can be employed. The 
leading term of turbulent kinetic energy varies 
quadratically with the normal distance from the wall, the 
coefficient of which can be determined by matching the 
solutions in the near wall region with that in the region 
away from the wall. Analytical formula for specific 
dissipation rate (ω) in the vicinity of wall exhibits an 
inversely quadratic behavior. 

 
The profiles of turbulent viscosity (µt), the quantity modeled 

in Spalart-Allmaras’s one-equation turbulence model, turbulent 
kinetic energy (k), and specific turbulent dissipation rate (ω), 
corresponding to the mean flow profiles in Fig. 6, are shown in 
Figs. 7-10, respectively.  
 
 
5. Conclusions 
 

The problem of specifying inflow profile boundary 
conditions involving compressible boundary layer is an area 
that has not received adequate attention. Huang et. al. modify 
the Van Driest I transformation to take into account the effect 
of realistic value of Prt, and apply it to the Coles’ profile that is 
extended towards the viscous sublayer. They devise an iterative 
procedure to consistently determine skin friction coefficient 
and major mean flow profiles from given external flow 
conditions and boundary layer displacement or momentum 
thickness. In this paper, three modifications are proposed to 
make the iterative procedure more convenient and more 
accurate. 

First, it is proposed to use Musker’s explicit expression for 
the wall velocity distribution in place of the extended Coles’s 
profile, which requires integration, to facilitate the iterative 
procedure. 

Second, theoretical analysis shows that a new form of 
density-weighted velocity, rather the Van Driest 
density-weighted velocity, obeys the linear-law at the viscous 
sublayer in a compressible turbulent boundary layer. Especially 
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for nonadiabatic wall at hypersonic Mach numbers, where there 
are large density gradients, these two kinds of density-weighted 
velocity could differ considerably. The linear-law for the new 
kind of density-weighted velocity should be employed to 
modify the profiles at the sublayer.  

Third, an iterative procedure is proposed for the case when 
boundary layer nominal thickness, rather than the displacement 
or momentum thickness, is given. 

The effects of these modifications are checked against 
experimental results at hypersonic Mach number. Reasonable 
good agreement is obtained. It is also shown that power-law 
fitting for the streamwise velocity gives unacceptable profile in 
the viscous sublayer. 

By incorporating continuity equation and integral 
momentum equation with the above iterative procedure, a way 
to determine normal velocity profile is proposed for the first 
time. The reproduced normal velocity at the boundary layer 
edge is found to agree remarkably well with the numerical 
solution of the boundary layer equations. 

Besides the mean flow variable profiles, ways to set profiles 
for turbulent quantities, based on algebraic turbulence models 
and general experimental observations, are also proposed. 

The same idea in this paper can be readily used in the 
determination of inflow profiles involving incompressible 
boundary layer. 
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Table 1 Comparison of reproduced skin friction coefficient, 

momentum and nominal thickness, and shape factor against the experimental values 
(The figures in the parenthesis are the errors relative to the experiment) 

 cf θ (cm) δ (cm) H 

Given θ 8.0E-04(5.2%)  1.53(13.3%) 18.0(-4.2%) 

Given δ 8.4E-04(10.5%) 0.0357(-23.0%)  18.1(-3.7%) 

Experiment18 7.6E-04 0.0464 1.35 18.8 

 
 
 

Table 2 Comparison of reproduced skin friction coefficient, shape factor 
and normal velocity at the edge of boundary layer against the solution of BL eqns. 

(The figures in the parenthesis are the errors relative to the BL solution) 
 cf H ve (m/s) 

Reproduced  2.66E-03(-1.5%) 1.68(-1.2%) 0.6730(5.2%) 

Solution of BL eqns 2.70E-03 1.70 0.6395 

 
 
 
Fig. 1 Comparison of reproduced streamwise velocity profiles with 

experiment values 
 
 
Fig. 2 Reproduced density and temperature profiles (Given θ) 
 

 
 
 
 
 
 

 
Fig. 3 Reproduced velocity distribution in viscous sublayer for 
hypersonic flow with iso-thermal wall. 

 
 
 Fig. 4 Comparison of reproduced velocity profiles in wall unit 
between power-law and law-of-the-wall 
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Fig. 5 Reproduced normal velocity profile 
 

 
 
 
 
Fig. 6 Comparison of reproduced profiles and solution of 
boundary layer equations 

 
 
Fig. 7 Profiles of turbulent viscosity reproduced from 
Baldwin-Lomax algebraic turbulence models 
 

 
 
 
 

 
Fig. 8 Reproduced profile of the modeled quantity in 
Spalart-Allmaras’s one-equation turbulence model 

 
 
 
 
 
Fig. 9 Reproduced profile of turbulent kinetic energy  

 
 
 
Fig. 10 Reproduced profile of turbulent specific dissipation rate 
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