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An efficient and highly accurate way to systematically reproduced the inflow boundary profiles for the mean flow variables,
as well as the turbulent quantities in one-equation and two-equation turbulence-models, from given externa flow
conditions and one boundary layer parameter, is described. The reproduced profiles are checked against both experimental
results and numerical solution of boundary layer equations. Theoretical analysis shows that a new form of density-weighted
velocity, rather the Van Driest density-weighted velocity, obeys the linear-law at the viscous sublayer in a compressible
turbulent boundary layer. Especialy for nonadiabatic wall at hypersonic Mach numbers, where there are large density
gradients, these two kinds of density-weighted velocity could differ considerably. It is also shown that power-law fitting for
the streamwise velocity gives unacceptable profile in the viscous sublayer. For first time, an efficient way to specify the
normal velocity profile is proposed and tested. The reproduced normal velocity at boundary layer edge is found to agree
remarkably well with numerical solution of boundary layer equations.

Nomenclature

8. =sound speed at boundary layer edge

¢ =locd skin-friction coefficient, t,/(r Us>/2)

C, = specific heat at constant pressure

H = shapefactor or intermediate variable in Eq. (7)
k = turbulent kinetic energy per unit mass

L& = reference length scale

M =Mach number

n =exponent in the power-law for molecular viscosity

N  =exponent in the power-law fit for streamwise velocity
P =pressure

Pr. = turbulent Prandtl number, 0.9

q = heat flux

Relm = unit Reynolds number per meter

Re; = Reynolds number based on momentum thickness, r .

Ue/m
Reg, = empiricaly-chosen Reynolds number,

based on viscosity at thewall, r duea/m,
= temperature
= Farve-averaged streamwise velocity
= U/ut
= friction velocity, (tw/r w)*?
= transformed velocity according to Eq. (2) or (10)
Farve-averaged normal velocity
streamwise coordinate
= distance above the wall
= yu/ny,
= streamwise integration step
= dissipation rate
=yd
= boundary layer nominal thickness
= displacement thickness
profile parameter in Coles’ formula
= momentum thickness
= molecular viscosity
= turbulent eddy viscosity
= kinematic viscosity
= modeled quantity in Spalart-Allmaras’s turbulence
model
= mass density
= shear stress
ty =principal turbulent shear stress
w = specific dissipation rate

c, c -
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Subscripts
0 = stagnation condition
e = boundary layer edge

w  =wall

Abbreviation
CFD = computational fluid dynamics
BL =boundary layer

1. Introduction

Much of research efforts in CFD have been devoted to the
grid generation, discretization of the governing equations, and
the solution of the resultant system of algebraic equations.
Attention has aso been paid b the posing of appropriate
numerical boundary conditions around the solution domain.
While the treatment of boundary conditions at nearly uniform
inflow, wall, farfield, and outflow’ has reached a high degree
of sophistication, the specification of solution variables across
compressible turbulent boundary layer at inflow is rather crude.
Common practice simply uses the power-law for streamwise
velocity, with the exponent fitted from experimental results.
The temperature profile is obtained via Crocco integral, and the
density profile through equation of state with the assumption of
constant pressure across the boundary layer. Empirical
formulas, simulating typical profiles in a boundary layer, for
the turbulence kinetic energy, turbulence dissipation rate and
specific dissipation rate are employed in CFL3D®. Zero normal
velocity is usually assumed for convenience. However, it is
demonstrated’ the zero normal velocity assumption would lead
to spurious expansion and compression waves near the inflow
region.

One reason why people are not much disturbed by such
crude treatment is the hope that turbulent boundary layer would
eventually develop to the equilibrium state by itself at some
distance downstream. While this might be the case, it
nonetheless requires extra length to be included in the inflow
region of the solution domain. And it is not clear how long this
development region should be. To reduce the size of the
solution domain and thereby reducing the computational
overhead, numerical solutions of boundary layer equations at
the sation that matches the integra parameters from
experiment is used by Zhand as the inflow boundary
conditions. This approach, while being highly accurate, is not
quite efficient.

In this paper, based on the works in Ref. 9, an efficient and
accurate way to systematically specify the inflow profiles for
the mean flow variables, as well as the turbulent quantities in
one-equation and two-equation turbulence-models, will be
described. Theoretical analysis will show that a new form of



density-weighted velocity, rather than the Van Driest
density-weighted velocity, obeys the linear-law in the viscous
sublayer for high-speed flows. It will also be shown that
power-law fitted stream-wise velocity distribution is
unacceptable in the viscous sublayer. In addition, for the first
time to the authors' knowledge, a way to specify the normal
velocity profile will be proposed and tested.

2. Specification of Major Mean Flow Profiles

A number of theories'®® has been developed to determine
skin-friction and specify velocity profile for compressible
turbulent boundary layers. The general consensus is that the
Van Driest | transformation'? is a good fit to the experimental
data of the velocng profilein the inner layer, and the Van Driest
Il transformation®’ offers a good fit to the experimental data of
skin friction. Two limitations of Van Driest | transformation are
that it is only valid for the log-law region and for turbulence
Prandtl number (Pr) equal to one. The velocity profile of
Huang et. al’® is an extension of the Van Driest | transformation
applied to Coles’ profile'! that includes the sublayer and the
wake regions, and the transformation is modified to be valid for
Pr; equal to 0.9. This profile family is a good fit to the boundary
layer velocity profiles for a wide range of Mach and Reynolds
numbers. For completeness, the procedure proposed by Huang
et. a. will be briefly described first. Its modifications and
extensions by the present authors are then followed.

Experimental evidence'® and theoretical analysis*? suggest
that the law-of-thewall and the law-of-the-wake are

transferable from incompressible flow to the compressible flow,

provided that the velocity is defined by the density-weighted
transformation and the wake parameter is correlated with
empirically-chosen Reynolds number Rey,. The law-of-the-wall
for the inner region, including the linear-law region, the buffer
region and the log-law region, combined with Coles’
law-of-the-wake for the outer region reads:
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and uC’b is a pure law-of-the-wall profile defined by
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where

I* =ky*(1- eY'"), k »041, A" =2553
The wake parameter P can be obtained from the curve fitting
formula due to Cebeci and Smith?®:

P =055[1- exp(-0.24,/Re, - 0.298Re,)] (4

As the pressure is nearly constant across the boundary layer,
the density ratio in Eq. (2) can be replaced by temperatureratio,
which can be obtained by neglecting the convection terms and
integrating the energy equation near a solid surface,

_ Prg,u_ Pru’

T=T (5)
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The above equation establishes the relationship between T,, and
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The integration of Eq. (2) yield the Van Driest transformation
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B=2c,T,/Pr,
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Theinverse of Eq. (6) is
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where

R=y /B

H=Alu
To obtain ¢ and the corresponding boundary layer profiles
for a given boundary layer displacement thickness or
momentum thickness, the following iterative procedure needs
to be performed:
1) Givend* (or ), guess d/d, g/dand u; (or g/dand u;).
2) Caculate Regp=r ¢Usg/my and find P from Eq. (4).
3) Caculateyy = u diny and obtain u 4" from Eq. (1).
4)  Obtain the nontransformed dimensionless velocity uq®
from Eq. (7).
5) Updateu, =ud/ Ug" and solve for ¢ = 2(To/Ty) (U /Us)%
6) Tabulate u asafunction of h=y/d using Egs. (1) and (7).
7) Update d*/d, g/d (or g/d*) by performing the following
integration numerically:
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wherer /r g isrepl aced by TJ/T with T obtained from Eq. (5).
Steps 1 to 7 are repeated until the solution converges.

Three modifications to the above procedure are proposed to
make it more convenient and more accurate.

A. Explicit expression for the wall velocity distribution due
to Musker?!

Eq. (1) involves integration and is not convenient to use. In
addition, there is a discrepancy in the slope condition at the
edge of the boundary layer, as discussed by Cornish?, Bull?,
and others. Instead, Musker's explicit expression for the
law-of-the-wall at hner region and law-of-the-wake at outer
region, satisfying the four boundary conditions: y=0, u.=0 and

du; /dy*=1; y = d Uc = Ue, and duc/dy = O, can be used to
facilitate the iterative procedure.
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B. Thevelocity distribution at the viscous sublayer

Velocity distribution at the viscous sublayer for compressible
turbulent boundary layer needs further examination. In Coles’
original proposa for Eg. (1), the viscous sublayer is neglected.
Huang et. al.X® found that it isimportant to include the sublayer
contribution for high-speed flows because the sublayer
becomes thicker and may occupy a substantial portion of the
whole boundary layer at hypersonic Mach number. In using Eq.



(1) as the base for their profile family, it is actually assumed
that Van Driest transformed velocity, Eq. (2), obeys the same
linear-law as that in the incompressible case. They
acknowledge that they cannot claim detailed reliability of their
profile family in the sublayer. As sublayer data for
compressible flows are scarce, especially for large heat transfer
rates, theoretica analysis will be pursued to examine this
problem in the following.

As in the incompressible turbulent boundary layer, thereis a
thin layer of constant total shear stress, called the inner layer, in
compressible turbulent boundary layer. In the turbulent core
region, the laminar shear stress is dominated by the Reynolds
stress and hence can be neglected. By assuming Pr; equal to
one and invoking Prandtl's mixing length theory, Van Driest*?
showed that the transformed vel ocity obeys the same loglaw as
that in the incompressible case. In the immediate vicinity of
wall, due to the damping of the wall, Reynolds stress can be
neglected. The laminar shear stress equals to the shear stress at
wall:

T
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Divided with viscosity at wall, it becomes:
miu_ru’

m,fy m,

Integrating and using power-law for molecular viscosity:
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As before, the temperature ratio in Eq. (9) can be replaced by
the density ratio:
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It indicates that the velocity transformed according to Eq. (9)
or (10) rather than Eq. (2) obeys the linear-law for high-speed
flows. For adiabatic wall, the temperature, hence the density, is
nearly constant in the viscous sublayer, therefore, these two
kinds of transformation give essentially the same results.
However, for non-adiabatic wall, especially for large heat
transfer at hypersonic Mach number, large density gradient
exists at the sublayer. These two kinds of transformation can be
quite different. Therefore, for non-adiabatic wall, Eq. (9) or
(20) should be invoked to modify the streamwise velocity after
obtaining v, through the iterative procedure described above.
For a more accurate streamwise velocity distribution,
Sutherland’s law for molecular viscosity can be used instead of
the power law in Eq. (9).

The actua calculation consists of the following three steps.
1) Determine u, through the iterative procedure.

2)  Substitute the Crocco's integral, Eq. (5), into Eq. (9),
integrate it numerically, thereby establish y as a tabulated
function of u.

3) Interpolate this tabulated function to find u at the desired
vaueof y.

=y (10)

C. Reproduce velocity distribution from boundary layer
thicknessd
In the situation where the boundary layer thickness dis

known or provided, rather than d or g, the following five steps
could replace the first five stepsin Huang's algorithm:

1) Givend guessgandu, and caculatet .,

2) Caculate ug from Eq. (6), calculate Rep= r (u.q/m, and
find P from Eq. (4).

3) Cadculate Reyy= r Wcedm,.

4)  Solvefor ys" from Regu= (Ucer Ut)(r w Uy dm, )=Ucq"Ys"and
Eqg. (8).

5 Update u, = ys'm, /(r.d), and solve for ¢ =
2(Te/Tu) (U /ue).

To test the effectiveness of these modifications in
reproducing the compressible turbulent boundary layer profiles,
the experimental resultsin Ref. 18 is chosen as benchmark. The
external flow conditions are as follows:

M, =7.80, Re|,=24.05"10°m™*, P, =1230Pa,

T, =688K T, =306K

Fig. 1 compares the streamwise velocity profiles reproduced
from given g or d against that measured from experiment. The
reproduced ¢, d or g are compared with the experimental
resultsin Table 1.

Fig. 2 shows the reproduced density and temperature profiles
across the boundary layer. It has to be noted that any usage of
Crocco's integral, even with the inclusion of recovery factor to
take into account the realistic turbulent Prandtl number, implies
that velocity boundary layer thickness equal to temperature
boundary layer thickness, which is not true for compressible
flows, especially for hypersonic flows.

Fig. 3 compares the streamwise velocity distribution, in wall
unit, in the viscous sublayer. The solid line depicts the
streamwise velocity distribution according to Eg. (10), while
the dashed curve depicts the same distribution but transformed
according to Eq. (2). It is clear that difference of about 10% at
the outer edge of viscous sublayer (y*=5) exists between the
two transformations. Although the distribution according to
Van Driest transformation still closely resembles a straight line,
the slopeis quite different from that in incompressible case.

As noted in the introduction, it is common practice in
experiment to fit velocity distribution across the boundary layer
to power functions. In CFD, power-law velocity distribution is
often used as a convenience to set the inflow streamwise
velocity profile. However, it has to be pointed out that
power-law is only approximately applicable to the outer part of
the boundary layer. In the immediate vicinity of the wall,
power-law assumption will result in qualitatively incorrect
velocity distribution. In fact, at the wall, the normal derivative
of streamwise velocity according to the power-law is singular.
Two-equation turbulence models usualy require the y* at the
first grid point be less than 1, and there should be severa grid
points within the viscous sublayer, if wall-function approach is
not used. In such a situation, the streamwise velocity
distribution near the wall should be determined through the
iterative procedure described above, rather than using
power-law fitting. Fig. 4 compares the velocity distributions in
sublayer, in wall unit, obtained from experimentaly fitted
power-law and that reproduced from the law-of-the-wall as
analyzed in the subsection B. It is clear that the distribution
obtained from the power-law is totally unacceptable in the
viscous sublayer.

3. Specification of Normal Velocity Profile

Norma velocity within boundary layer is deemed
sufficiently small and usualy assumed to be zero for
convenience. However, Orkwis et. al.” demonstrate in the
simulation of consecutive flat plates that spurious shock and
expansion waves will be generated as a result of zero normal
velocity assumption in the inflow profile for the second plate.
To the authors' limited knowledge, there has been no efficient
way of specifying normal velocity profile for compressible



turbulent boundary layer in open literature. In this paper, by
incorporating continuity equation and integral momentum
equation with the iterative procedure in section 1, a way to
determine normal velocity profile is proposed and tested
against boundary layer solution.

The Farve-averaged® continuity equation for steady
compressible flow reads

fru, frv_
> Ty

It follows that if the density and streamwise velocity profile
at two closely located stations are known, the normal velocity
profile can be obtained through the integration of Eq. (11). Itis
aready shown in section Il that the density and streamwise
velocity profile at a station can be efficiently reproduced, with
good accuracy, as long as the externa flow conditions and one
boundary layer parameter at that station are provided. The
question left is how to find the density and streamwise velocity
profile at the next station. For this purpose, momentum integral
equation for a boundary layer over flat plate under
zero-pressure gradient can be employed.

dq _ C;

dx 2

The procedure to specify normal velocity profile consists of
the following steps:

1) Given the external flow conditions and one integra
parameter, say, boundary layer momentum thickness q at
one station, calculate the density, streamwise velocity
profile, and skin friction coefficient c; at that station
through the algorithm described in section 11.

2)  Determine the boundary layer momentum thickness at the
next station through the integration of Eq. (12).

3) Cadculate the density, streamwise velocity profile at the
new station in the same manner asin step 1.

4) Determine the norma velocity profile through the
integration of Eq. (11).

(11

(12)

To check the effectiveness of the above procedure, the sonic
flow over an isothermal flat plate, employed by Wilcox®® to
instruct the usage of his boundary layer solution program
EDDYBL, is chosen as benchmark. The externa flow
conditions are as follows:

M, =1.0, Re|,=4.07" 10°m™,

P, =23112Pa, T, = 260K

The temperature at wall is 242K. The station chosen for
comparison has ¢ = 2.704x10°3, and q =1.527x10m.

The normal velocity profile is not an output in Wilcox’'s
program. However, the normal velocity at the boundary layer
edge (/) can be obtained from the integration of continuity
equation using the solution of boundary layer equations at two
adjacent stations. The value is found to be 0.6395m/s, and can
be taken as a close approximate to the exact value. The
corresponding value reproduced from the proposed procedure
is 0.673m/s. It is remarkable that the difference is only about
5% of the exact value, considering the fact that v, is only about
0.2% of the freestream velocity. The reproduced normal
velocity pofile is shown in Fig. 5. The comparison of the
reproduced profiles for density, stresmwise velocity, and
temperature with the boundary layer solutions, is shown in Fig.
6. Comparison of skin friction coefficient, shape factor, and
normal velocity at boundary layer edgeislisted in Table 2.

A word of caution for the choice of streamwise step Dx in the
integration of Eq. (12) isin order. It should neither be too large,
to incur excessive discretization error, nor be too small, to incur
round-off error. In the example above, non-dimensionalized Dx
from 0.01 to 0.5 gave essentially the same results.

4. Specification of Turbulence Quantity Profiles

With the mean flow profiles of density, velocity, and
temperature available, turbulent quantity profiles can be
determined either from algebraic turbulence models, from
experimentally established laws, or from their definitions in
turbulence models.

1)  Turbulent viscosity profile can be readily calculated with

any simple algebraic turbulence model, say
Baldwin-L omax's model?®.
2) For the oneequation turbulence mode  of

Spalart-Allmaras®’, the modeled quantity is related to the
turbulent viscosity via an agebraic equation, hence can
be determined from the solution of that equation.

3) For two-equation turbulence models®?®% first the
principal turbulence shear stress(t ) is calculated asthe
product of the turbulent viscosity and the strain rate of the
mean flow (neglecting velocity derivative along the flow
direction). Then, turbulent kinetic energy k can be
determined through the experimentally established
relation®t ,, = ak , where a, the so-called structural
parameter, has a value of about 0.3.

4) The turbulence dissipation rate (€ ) or specific
dissipation rate (w) can be deduced from k and turbulent
viscosity according to their relationship in the turbulence
models.

5)  Within the viscous sublayer, there is no proportionality
between € ;) and k. Instead, asymptotic results from
Taylor series expansion and Navier-Stokes equations
applied in the vicinity of wall can be employed. The
leading term of turbulent kinetic energy varies
quadratically with the normal distance from the wall, the
coefficient of which can be determined by matching the
solutions in the near wall region with that in the region
away from the wall. Analytical formula for specific
dissipation rate @) in the vicinity of wall exhibits an
inversely quadratic behavior.

The profiles of turbulent viscosity (m), the quantity modeled
in Spaart-Allmaras’s one-equation turbulence model, turbulent
kinetic energy (), and specific turbulent dissipation rate (),
corresponding to the mean flow profilesin Fig. 6, are shown in
Figs. 7-10, respectively.

5. Conclusions

The problem of specifying inflow profile boundary
conditions involving compressible boundary layer is an area
that has not received adequate attention. Huang et. al. modify
the Van Driest | transformation to take into account the effect
of realistic value of Pry, and apply it to the Coles’ profile that is
extended towards the viscous sublayer. They devise an iterative
procedure to consistently determine skin friction coefficient
and magor mean flow profiles from given external flow
conditions and boundary layer displacement or momentum
thickness. In this paper, three modifications are proposed to
make the iterative procedure more convenient and more
accurate.

First, it is proposed to use Musker's explicit expression for
the wall velocity distribution in place of the extended Coles’s
profile, which requires integration, to facilitate the iterative
procedure.

Second, theoretica analysis shows that a new form of
density-weighted ~ velocity, rather the Van  Driest
density-weighted velocity, obeys the linear-law at the viscous
sublayer in a compressible turbulent boundary layer. Especially



for nonadiabatic wall at hypersonic Mach numbers, where there
arelarge density gradients, these two kinds of density-weighted
velocity could differ considerably. The linear-law for the new
kind of density-weighted velocity should be employed to
modify the profiles at the sublayer.

Third, an iterative procedure is proposed for the case when
boundary layer nominal thickness, rather than the displacement
or momentum thickness, is given.

The effects of these modifications are checked against
experimental results at hypersonic Mach number. Reasonable
good agreement is obtained. It is also shown that power-lav
fitting for the streamwise velocity gives unacceptable profilein
the viscous sublayer.

By incorporating continuity equation and integral
momentum equation with the above iterative procedure, a way
to determine normal velocity profile is proposed for the first
time. The reproduced normal velocity at the boundary layer
edge is found to agree remarkably well with the numerical
solution of the boundary layer equations.

Besides the mean flow variable profiles, ways to set profiles
for turbulent quantities, based on algebraic turbulence models
and general experimental observations, are also proposed.

The same idea in this paper can be readily used in the
determination of inflow profiles involving incompressible
boundary layer.

References

(). Thomas, J. L., and Salas, M. D., “Far Field Boundary
Conditions for Transonic Lifting Solutions to the Euler
Equations,” AIAA Journal, Vol. 24, 1986, pp.1074-1080.

(2). Giles, M. B., “Nonreflecting Boundary Conditions for
Euler Equation Calculations, ” AIAA Journal, Val. 28, No.
12, 1990, pp.2050-2058.

(3). Pulliam, T. H., and Steger, J. L., “Recent Improvements
in Efficiency, Accuracy, and Convergence for Implicit
Approximate  Factorization Alégorithms, AlAA
Paper-85-0360, 1985. AIAA 23 Aerospace Sciences
Mesting.

(4. Nordstrom, J.,
Time-Dependent Navier-Stokes Equations,
Journal, Val. 30, No. 6, 1992, pp.1654-1656.

(5). Rizzi, A. W., “Numerical Implementation of Solid-Body
Boundary Conditions for the Euler Equations,” ZAMM,
Vol. 58, 1978, pp.301-304.

(6). Krigt, S. L., Biedron, R. T., and Rumsey, C. L., “CFL3D
User's Manua (Version 5.0),” NASA/TM -1998-208444.
pp. 259-260.

(7). Orkwis, P. D., Tam, C. J, and Disimile P. J,
“Observations on Using experimental Data as Boundary
Conditions for Computations,” AIAA Journal, Val. 33,
No. 1, 1995, pp.176-178.

(8). Zhang, X.,"“Compressible Cavity Flow Oscillation due to
Shear Layer Instabilities and Pressure Feedback,” AIAA
Journal, Vol. 33, No. 8, 1995, pp. 1404-1411.

(9). Zhang, J. B., “Experimental and Computational

Investigation of Supersonic Cavity Flows,” Ph. D. Thesis,

Dept. of Aeronautics and Astronautics, University of

Tokyo, Japan, Sept. 2000, pp. 43-46.

Spalding, D. B. and Chi, S. W., “The Drag of a

Compressible Turbulent Boundary Layer on a $nooth

Flat Plate With and Without Heat Transfer,” J. Fluid

Mechanics, Val. 18, Pt. 1, Jan. 1964, pp. 117-143.

Coles, D., “The Turbulent Boundary Layer in a

Compressible Fluid,” The Physics of Fluids, Val. 7, No. 9,

Sept. 1964.

“Extrapolation Procedures for the
AlAA

(10).

(12).

(12)

(13).

(14).

(15).

(16).

17).

(19).

(19).

(20).

(22).

(22).

(23).

(24).

(25).

(26).

7).

(29).

(29).

(30).

(30).

. Van Driegt, E. R, “Turbulent Boundary Layer in
Compressible Fluids,” The Aeronautical Journal, VVol.18,
No. 3, 1951, pp. 145-160.

Van Driet, E. R, “ The Problem of Aerodynamic
Hesting,” Aeronautical Engineering Review, Val. 15, No.
10, Oct. 1956, pp. 26-41.

Sommer, S. C. and Short, B. J, “FreeFlight
Measurements of Turbulent-Boundary Layer Shin
Friction in the Presence of Severe Aerodynamic Heating
a Mach Numbers From 2.8 to 7.0, TN 3391, 1955,
NACA.

Baronti, P. O. and Libby, P. A., “Vdocity Profiles in
Turbulent Compressible Boundary Layers,” AIAA
Journal, Val. 4, No. 2, 1966, pp.193-202.

Huang, P. G., Bradshaw, P., and Coakley, T. J, “Skin
Friction and Velocity Profile Family for Compressible
Turbulent Boundary layers’, AIAA Journal, Vol. 31, No.
9, 1993, pp1600-1604.

Hopkins, E. J., and Inouye, M., “An Evaluation of
Theories for Predicting Turbulent Skin Friction and Heat
Transfer on Flat Plates at Supersonic and Hypersonic
Mach Number, AIAA Journal, Vol. 9, No. 6, 1971, pp.
993-1003.

Hopkins, E. J., Keener, E. R, Polek, T. E. and Dwyer, H.
A.,  “Hypersonic Turbulent  Skin-Friction and
Boundary-Layer Profiles on Nonadiabatic Flat Plates,”
AIAA Journal, Val. 10, No. 1, 1972, pp.40-48.

Fernholz, H. H.,, and Finley, P. J, A Critica
Commentary on Mean Flow Data for Two-Dimensional
Compressible Turbulent Boundary Layers,”
AGARD-AG-253, 1980.

Cebeci, T., and Smith, A. M. O., Analysis of Turbulent
Boundary layers, Academic Press, New York, 1974, p.
221.

Musker, A. J., “ Explicit Expression for the Smooth Wall
Velocity Distribution in a Turbulent Boundary Layer”,
AlAA Journal, Val. 17, No. 6, 1979, pp. 655-657.
Cornish, J. J. 111, “ A Universal Description of Turbulent
Boundary Layer Profiles With or Without Transpiration,”
Research Rept. 29, Mississippi State Univ., Aero Physics
Dept., 1960.

Bull, M. K., “Veocity Profiles of Turbulent Boundary
Layers,” The Aeronautical Journal, Vol.73, 1969, p. 143.
Favre, A., “ Equations des gaz turbulents compressibles,”
J. de Mecanique, Vol. 4., No. 3, 1965.

Wilcox, D. C., “Turbulence Modeling for CFD”, DCW
Industries, Inc., La Canada, California, 1993.

Baldwin, B. S., Lomax, H., Thin Layer Approximation
and Algebraic Model for Separated Turbulent Flows,
AlAA Paper -78-257, Jan. 1978.

Spalart, P. R, Allmaras, S. R, A OneEquation
Turbulence Model for Aerodynamic Fows, AIAA
Paper-92-0439, 1992.

Jones, W. P. and Launder, B. E.: The prediction of
Laminarization with a Two-Equation Model of
Turbulence. Int. J. Heat & Mass Transfer, vol. 15, no. 2,
Feb. 1972, pp. 301-314.

Wilcox, D. C., Reassessment of the Scale-Determining
Equation for Advanced Turbulence Models, AlAA
Journal, vol. 26, no. 11, 1988, pp.1299-1310.

Menter F. R., Two-Equation Eddy -Viscosity Turbulence
Models for Engineering Applications, AIAA Journal, vol.
32, no. 8, August 1994, pp.1598-1605.

Townsend, A. A., The Sructure of Turbulent Shear Flow,
Second Edition, Cambridge University Press, Cambridge,
1976.



Table 1 Comparison of reproduced skin friction coefficient,
momentum and nominal thickness, and shape factor against the experimental values

(Thefiguresin the parenthesis are the errors rel ative to the experiment)

G g (cm) d(cm) H
Giveng 8.0E-04(5.2%) 153(133%) | 18.0(-4.2%)
Givend 8.4E-04(10.5%) 0.0357(-23.0%) 18.1(-3.7%)
Experiment ™ 7.6E-04 0.0464 1.35 18.8

Table 2 Comparison of reproduced skin friction coefficient, shape factor
and normal velocity at the edge of boundary layer against the solution of BL egns.

(Thefiguresin the parenthesis are the errors relative to the BL solution)

Solution of BL egns

G H Ve (MV/s)
Reproduced 2.66E-03(-1.5%) 1.68(-1.2%) 0.6730(5.2%)
5 70E-03 170 06395

Fig. 1 Comparison of reproduced streamwise velocity profiles with

Fig. 3 Reproduced velocity distribution in viscous sublayer for

hypersonic flow with iso-thermal wall.
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Fig. 2 Reproduced density and temperature profiles (Given 6 )
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Fig. 5 Reproduced normal velocity profile
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Fig. 6 Comparison of reproduced profiles and solution of
boundary layer equations
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Fig. 7 Profiles of turbulent viscosity reproduced from
Baldwin-Lomax algebraic turbulence models
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Fig. 8 Reproduced profile of the modeled quantity in
Spalart-Allmaras' s one- equation turbulence model
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Fig. 9 Reproduced profile of turbulent kinetic energy
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Fig. 10 Reproduced profile of turbulent specific dissipation rate
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