CIP法に適した動的境界適合格子形成法 (ソロバン格子)の研究

Adaptive Moving Grid (Soroban Grid) Suitable for CIP scheme

森木洋、東京工業大学大学院,東京都目黒区大岡山 2-12-1,hmoriki@es.titech.ac.jp 矢部孝,東京工業大学教授,東京都目黒区大岡山 2-12-1, yabe@mech.titech.ac.jp Hiroshi Moriki, Tokyo Institute of Technology, 2-12-1 Oookayama Meguroku Tokyoto Takashi Yabe, Tokyo Institute of Technology, 2-12-1 Oookayama Meguroku Tokyoto

Solving the movement of complex deformable structure, the method of body-fitted coordinates has been commonly used, but the enormous calculation load for the grid formation is a serious problem. Applying the CIP method to such body-fitted coordinate needs coordinate transformation for interpolation leading to the loss of simplicity of the scheme. The purpose of this research is to develop a simple grid formation scheme suitable for CIP scheme, and to prove the effectiveness of this scheme by applying the method to various subjects.

1. 緒言

流体シミュレーションにおいて格子は非常に重要な要素 となる。物体形状が単純であれば、デカルト座標を用いて計 算できるが、実際に解きたい流れ場の多くは、航空機まわり やエンジン内部など複雑なものであることが多い。これらの 問題に対しては、物体適合座標を用いた方法が一般的である が、その格子形成に多大な計算負荷がかかることが問題とな る。特に境界が移動する問題においては計算の途中に格子を 形成しなおす必要が生じ、その計算負荷は膨大となる。

また、移流方程式を高精度かつ安定に解く計算スキームで ある CIP 法において、そのような物体適合座標を用いて計算 を行うと座標変換による計算負荷が発生し、スキームの簡便 性を損ねる。

このような背景から、本研究では簡単かつ CIP 法に適した 格子形成方法を開発し、様々な例題に適用することにより本 手法の有効性を検証する。

2.格子形成法

本研究では、流れ場を適切なモニター量によってモニター することによって、解に適合した格子形成を行う解適合格子 法を考えた。解適合格子法では、格子の分割・結合により格 子を形成する AMR (Adaptive Mesh Refinement)法が有名で あるが、本研究では、初期に与えられた格子数を用い、モニ ター量に従って適当な位置に移動させることによって格子 形成を行う。以下に1次元での格子形成法について説明する。

流れ場のモニター量を(1)式のように定義する。この値は、 ある2格子点間での物理量の変化の値を表しており、この値 が大きいところほど物理量の変化の激しいところとなり、格 子を密にする必要がある。また、,はそれぞれフリーパラ メータであり、その値を変えることにより格子の粗さを調節 できる。

$$M(x,t) = \sqrt{1 + a\left(\frac{\partial f}{\partial x}\right)^2} + b\left|\frac{\partial^2 f}{\partial x^2}\right|$$
(1)

$$\int_{x_i}^{x_{i+1}} M(x,t) dx = \frac{1}{N} \int_{x_L}^{x_R} M(x,t) dx, \quad i = 1, \dots, N \quad (2)$$

(1)式で定義したモニター量を用い(2)式に従って格子を分割 する。この式は、(1)式で定義したモニター量を計算領域全体 で等しくなるように格子を分割することを意味しており、こ れにより、物理量の変化の激しいところでは格子が密に、変 化の緩やかなところでは格子が疎になるように、格子を分割 することができる。格子分割の原理を図1に示す。 次に2次元での格子形成法について説明する。2次元の場 合では、格子の移動を一方向づつ行うことにより、1次元で のアルゴリズムを用いて格子を分割する。ここで格子の複雑 形状による計算手法の複雑化を避けるため次の制約を科し た。ある1方向に対してはそれぞれの格子点で移動を行い、 もう一方向に対してそれぞれの格子点を結ぶ線で移動する。 このようにしてできる格子形状を図2に示す。また、この格 子は形状がちょうどソロバンのようになるため**ソロバン格** 子と名づけ、以下この格子をソロバン格子と呼ぶ。

Fig. 1 The principle of grid generation method

Fig. 2 Soroban Grid

3.計算例

3.1 移流計算

上記のアルゴリズムと CIP 法を用いて、(3)式に示す移流 方程式を解いた。ここで、速度 *u* は一定である。

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = 0 \tag{3}$$

最初に本研究の核となる CIP 法について簡単に説明す る。CIP 法とは、『格子間のプロファイルも元の方程式を 満足するように構成する』ことを提案した手法であり、解 析解に近い補間を構成することができる。具体的には、各 格子において物理量だけでなく、その空間微分値も変数と して用いることにより2格子点間を3次の補間関数で近似 する。今、格子i-1とiの2格子点間の補間関数をF(x)と 定義すると、n+1ステップ後の物理量fの値は、固定格子 において(4)式のように求まる。また2で説明した格子生成 により作成される移動格子において、格子は(5)式に示す速 度を持つため、n+1ステップ後のfの値は(6)式のように求 まる。以上の原理を図 3,4 に示す。

$$f_i^{n+1} = F_i(-u\Delta t) \tag{4}$$

$$u_g = \frac{x_i^{n+1} - x_i^n}{\Delta t} \tag{5}$$

$$f_i^{n+1} = F_i[-(u+u_g)\Delta t]$$
(6)

Fig. 3 Profile on the fixed grid system after t

Fig. 4 Profile on the moving grid system after

以上の原理により、固定格子および移動格子を用いて計 算を行った。1000 ステップ後の固定格子と移動格子による プロファイルの比較を図5に、また移動格子を用いた時の 格子幅を図6に示す。図5より、固定格子に比べ、移動格 子の方が界面をよく捕らえられている事がわかる。また図 6より、界面付近に格子が集まってきている様子がわかる。 しかし依然として格子界面前後でのオーバーシュート、ア ンダーシュートの問題が残ってしまう。これは、補間関数 に有利関数 CIP 法[1]を用いることにより解決すること ができる。1000 ステップ後の有利関数 CIP 法を用いた固 定格子と移動格子によるプロファイの結果を図7に示す。 図7に示したように移動格子を用いた有利関数 CIP 法で は解析解とほぼ一致した結果が得られた。

Fig.7 Linear wave propagation

Copyright © 2001 by JSCFD

t

3.2 流体計算

ソロバン格子を用い、2次元円柱周りの非圧縮性粘性流体の問題を解いた。支配方程式は連続の式(7)とナビエ・ストークス方程式(8)式となる。ナビエ・ストークス方程式は基本的に移流現象(9)式、拡散現象(10)式、加速現象(11)式の3つの現象の和として扱うことができる。そこで個々の現象を別々に取り扱う方法として3段階分解法[2]を用いて問題を解いた。

$$\nabla n = 0 \tag{7}$$

$$\frac{\partial \mathbf{n}}{\partial t} + \mathbf{n}\nabla \mathbf{n} = -\frac{1}{r}\nabla p + \mathbf{u}\Delta \mathbf{n} \tag{8}$$

((3段階分解法))

$$\frac{\partial n}{\partial t} + n \nabla n = 0$$
 (移流現象) (9)

$$\frac{\partial \mathbf{n}}{\partial t} = \mathbf{u}\Delta\mathbf{n}$$
 (拡散現象) (10)

$$\frac{\partial n}{\partial t} = -\frac{1}{r} \nabla p$$
 (加速現象) (11)

移流相(移流現象)には CIP 法を用い、非移流相(拡散 現象・加速現象)には有限要素法を用いた。ここで、2次 元ソロバン格子における移流相の解法を説明する。

((2次元ソロバン格子での移流))

2次元ソロバン格子は図2のようになり直交性を有しな い。そこで、図8に示すように、移流原点を含む領域で1 次元 CIP 法の組み合わせることで移流原点における物理 量を補間する。このように directional splitting を用いるこ とにより、格子が直交性を有しない場合でも、1方向さえ 線で整列されていれば、座標変換を行わずに移流原点の物 理量を補間することができる。近年、有限要素法に CIP 法 が使われることが多くなってきているが、格子形状の自由 な有限要素法において、CIP 法を組み込むとき、その座標 変換の計算コストが問題となる。しかし、ソロバン格子で はその計算負荷をかけずに計算を行うことができる。

Fig. 8 The principle of interpolation with Soroban Grid

((2次元ソロバン格子での微分値の更新))

CIP 法において、物理量の空間微分値も必要とするため、 非移流相を計算し終えた時点で、その影響を微分値に反映 させる必要がある。ソロバン格子における非移流相の影響 の計算は次の2つの方法で行った。方法1では、左右に隣 節する点の傾きを x 軸方向に分解し、その値を用いて各格 子間の重みを考えた式(12)より求める。方法2では、自分 の真横の点をそれをはさむ2点で補間して求め、その値を 用いて、2次中心差分より値を用いて求める。

((計算条件))

以上のアルゴリズムを用いて、幅 0.2m の流路におかれ ている直径 0.02m の円柱周りの 2 次元流れの計算を行った。 計算に用いた格子数は、55*65 で計 3575 点用いた。解析 する領域を図 9 に、円柱周辺のソロバン格子を図 10 に示 す。初期条件として速度および圧力は零として、t > 0 に おいて円柱上流から一様流 u0 が流入するものとした。速 度の境界条件としては、円柱表面にはノースリップ、流路 側壁にはスリップを課している。レイノルズ数 Re=100,計 算時間間隔 dt=0.08 として計算を行った。

Fig.11 Domain of analysis

Fig.12 Soroban Grid

((計算結果))

13000 ステップ後の圧力分布結果を図 13 に、渦度の分 布の結果を図 14(a),(b)に示す。圧力は円柱前方で局所的 に高くなっており、円柱後方にはカルマン渦列の発生が 見て取れ、円柱周りの流れを再現できている。渦放出の 周波数を調べ、無次元数であるストロハル数を計算する と、0.166 となった。実験値は 0.164 であることからも本 計算が妥当なものであることがわかる。

また、図 14 からも円柱後方での渦の発生が見て取れ る。図 14 の(a),(b)は両方とも同じ計算時間後の渦度を表 しおり、その違いは(a)が、渦度を 13000 ステップ後の速 度のプロファイルから差分により求めているに対し、(b) は CIP 法が持っている微分値から渦度を求めている。両 者をよく比較すると、CIP 法の微分値を用いて表示して いる(b)の方が、渦度が滑らかに表示されている。これに 示されるように、CIP 法を用いて計算を行えば、計算結 果のビジュアライゼーションにおいて、非常に効果的で あると考えられる。

Fig.13 Pressure profile

Fig.14 Vortex profile

4.結論

簡単かつ CIP 法に適した格子形成方法を開発し、1次元の 移流問題および2次元の流体問題を解いた。移流計算におい ては、解析解とよく一致した結果が得られ、開発した格子形 成法による計算精度の向上が確認できた。また流体計算にお いては円柱周りの流れを良く再現でき、流体問題へソロバン 格子が適用できることを確認した。

参考文献

[1] F.Xiao, T.Yabe and T.Ito"Constructing Oscillation Preventing Scheme for the Advection Equation by a Rational Function", Comp.Phys.Comm.99pp.1-12, 1996

[2] 棚橋隆彦, "流れの有限要素解析 I",朝倉書店(1997)