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A semi-Lagrangian/semi-implicit model for atmospheric flows
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It’s getting widely accepted that a numerical model
with a spatial resolution finer than a few kilometers
should include explicitly the effects of non-hydrostatics
and compressibility. However, directly solving acous-
tic wave as well as gravity wave, which appear as the
“fast modes” in atmospheric motion, restricts the time
integration step to an impractically small value if a com-
pletely explicit time marching approach is used.

This work presents a compressible and non-
hydrostatic model by using a two-step semi-Lagrangian/
semi-implicit formulation. Rather than the conventional
terrain following mesh, a grid based on Cartesian coor-
dinate is used to represent topography. Manipulations,
such as the sub-grid flux evaluation and velocity modi-
fication to the surface cells, have been adopted to get a
more realistic representation for topography.

The set of fully compressible and non-hydrostatic
governing equations are similar to those in [1]. Semi-
Lagrangian/semi-implicit formulations are used for all
prognostic variables. For any evolution equation of de-
pendent variable ¢

2(x,1) = Lip(x, 1), 1)

a time integration algorithm using two-step semi-
Lagrangian advection can be written as
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where % denotes any Eulerian computational grid 'point,
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( ) represents the average over a Lagrangian path
connecting (%,¢ + At) and (% — VAt, t) in time-space
domain. In the present model, an averaging based on
an explicit/implicit weighting is used.

BxD) = ad(k,t+ AL + Bk - VALY, (3)
where a and 3 are the explicit/implicit factors, and o+
B = 1. It is obvious that an O(At?) time integration
can be obtained if @« = 8§ = 0.5.

The numerical integrations of the governing equa-
tions are then written in form of (1). Let the updated
value ¢"*! be at grid point % at time ¢ + At and¢* the
value at the departure point & — VAt at time ¢ which
is re-mapped onto grid point % by the CIP method[2,3],
a Helmholtz equation for pressure can be derived from
the time-discretized form of the governing equations. A
multigrid algorithm is used to solve the pressure equa-
tion,and velocity and temperature are then computed
with the updated pressure.

As the preliminary tests for the numerical model, we
present two simulations as follow. .

Density current: A density current was produced by
releasing a cool dam(4]. Again, the density front and
the eddies induced from Kelven-Helmholtz instability
are well resolved even with a relatively coarse computa-
tional mesh (Fig.1).

Figure 1: Density current with a grid spacing of
250m x 250m.

Linear hydrostatic mountain wave: A linear moun-
tain wave with small amplitude defined as the Al test
of Satomura’s benchmark set[5] was simulated. Fig.2
shows the vertical velocity. The numerical solution re-
covered the vertical wave length and wave chain pattern
with an adequate accuracy.
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Figure 2: Vertical velocity of a linear hydrostatic moun-
tain wave.

References

(1] M.Tanguay et.al, Mon. Wea. Rev. 118(1990)
1970. [2] T. Yabe et.al, Comput. Phys. Com-
mun. 66(1991) 233 (3] F.Xiao, Mon. Wea.
Rev.  128(2000) 1165. [4] R.C.Carpenter et al.
Mon. Wea. Rev. 118(1990) 587.[5] T.Satomura,
http://www.clim.kugi.kyoto-u.ac.jp /satomura/.

Copyright © 2001 by JSCFD



