フラッター解析における連成力学

Coupling Dynamics in Flutter Analysis

中道 二郎^{*} *航空宇宙技術研究所 構造材料研究センター

Jiro Nakamichi*

*National Aerospace Laboratory, Structures and Materials Research Center

E-mail:jiro@nal.go.jp

1 はじめに

しばしば多分野連成問題という言葉が聞かれるが、空力弾性学は航空機の開発の歴史が始まった 直後から重要課題であった。図1に空力弾性における空気力A、弾性力E、慣性力Iの力学的な 関与と、航空機の設計上の諸課題との関連を示す。三者の連成で現象が支配されるものに、フラ ッタ、バフェット、航空機の動的応答およびその安定問題がある。空気力と弾性力のみの連成は、

いわゆる静的な問題であり、ダイバージェンス、 静的空弾変形、エルロンの逆効き、蛇面の制御 効果および静的安定性などがその範疇である。 また、空気力と慣性力の連成としては航空機の 動的安定問題、慣性力と弾性力との間では良く 知られた振動問題があり、これも整理上は、連 成問題といってよい。図2には、図1の三角形 の内部に置かれた諸現象を模式的に示してある。 横軸はマッハ数であり、縦軸は航空機の揚力係 数(迎角)である。領域 の低速、小迎角では 古典的な翼の曲げ捻りフラッタ、領域 の低速域

では小規模剥離、遷音速域では衝撃波/境界層干渉剥離、超音速では Vortex Break Down などの 現象が伴い、それぞれ構造側の自励振動を引き起こす要因となる。さらに、領域の高迎角域で は大規模剥離によるダイナミックストール、バフェット等による強制振動が重要な課題となる。 領域 および での現象は、空気力の強い非線形性から古典的な線形理論による空力弾性現象の 解析は不可能であり、数値流体力学がその威力を発揮する場となる。

2 流れと弾性体運動連成解析

Free-Free で流れの中に置かれた弾性体は、空気力あるいは流体力が作用することにより、 その姿勢、位置さらに形状が時々刻々変化する。その変化が流体力の変化を誘起し、弾性体 の運動を支配することになる。流体側としては、非定常性を考慮されなければならない。こ の連成問題は数学モデルとしては、流体の支配方程式および対象とする弾性体の運動方程式 で記述されることになる。航空の分野でいえば、飛行力学そのものが、流体力と剛体運動の 連成、構造空力弾性力学が流体力と弾性体運動の連成問題ということになる。

2-1 流れの支配方程式

流れの支配方程式は非定常ナビエ・ストークス方程式(薄層近似)とし、一般曲線座標系で

 $\frac{\partial \hat{Q}}{\partial t} + \frac{\partial \hat{E}}{\partial x} + \frac{\partial \hat{F}}{\partial h} + \frac{\partial \hat{G}}{\partial z} = R_e^{-1} \frac{\partial \hat{S}}{\partial z} \quad (1)$ で表される。(1)式に付帯して乱流モデル を導入することが多い。 これらの定式化は多くの文献に詳しいが、こ こに連成問題を扱う場合に重要となる諸量 を挙げると $U = \mathbf{x}_t + \mathbf{x}_x u + \mathbf{x}_y v + \mathbf{x}_z w$ $V = \mathbf{h}_t + \mathbf{h}_x u + \mathbf{h}_y v + \mathbf{h}_z w \quad (1-2)$ $W = \mathbf{z}_t + \mathbf{z}_x u + \mathbf{z}_y v + \mathbf{z}_z w$ $\mathbf{x}_t = -\mathbf{x}_t \mathbf{x}_t - \mathbf{y}_t \mathbf{x}_t - \mathbf{z}_t \mathbf{x}$

 $\begin{aligned} \mathbf{x}_t &= -x_t \mathbf{x}_x - y_t \mathbf{x}_y - Z_t \mathbf{x}_z \\ \mathbf{h}_t &= -x_t \mathbf{h}_x - y_t \mathbf{h}_y - Z_t \mathbf{h}_2 \\ \mathbf{z}_t &= -x_t \mathbf{z}_x - y_t \mathbf{z}_y - Z_t \mathbf{z}_2 \end{aligned} \tag{1-3}$

Z Aeroelastic Phenomena around Aircraft

である。ここでの x_t 、 h_t 、 z_t は非定常計算では非常に重要な役目を果たす。これらは物理

的には、計算空間での格子点の移動速度を表す。上記の一般曲線座標系の定式化では、これ らがコントラバリアント速度の第1項に現れ、特に物体表面上では境界の移動と運動量の保 存との関係が自動的に記述されることになる。

2-2 構造側の支配方程式

本稿では、構造側は基本的には線形範囲で取り扱う。古典的であるが簡便な線形手法を採用する。 つまり、実際に現れるフラッタモードを翼の固有振動モードを重ね合わせて近似する。しかる後、 レイリーリッツ法を用いて、いわゆる構造の運動方程式(弾性方程式)を導く。 通常、航空機構 造の有限要素法振動解析で取り扱う自由度は数千である。これらの自由度をすべて考慮しての空 力・構造連成解析のモデル化は可能であるが、効率的とは考え難い。航空機の翼変形解析でモー ダル解析を採用した場合、数十の自由度で以って十分な精度が得られる場合が多い。殆どの場合 フラッタなどのモードは局所的な変形を考慮する必要はなく、グローバルな変形形状が圧倒的に 重要である。

3 連成方程式(フラッタ方程式)

具体的手順としては、まず、構造側を有限要素法などによって、線形振動解析を行い、固有振動 数および固有振動モードを計算する。静的な翼の変形あるいは振動モードはこれらの固有振動モ ードによって能く近似し得る。これらをいわゆる一般座標を用いて重ね合わせ、ラグランジェの 運動方程式を導く。これらの、外力として空気力を代入することになるが、(1)式で計算された 非線形空気力は、すべて一般空気力として扱われる。いわゆるフラッタ方程式は

$$m_i \ddot{q}_i + 2\mathbf{V}_i k_i q_i + k_i^2 m_i q_i = \overline{Q} \iint_{S} (-C_P n_Z + C_f t_Z) \Phi_i dS$$
(2)

となる。(2)式は弾性体運動方程式であり、 q_i, Φ_i, m_i および k_i は、それぞれ、一般座標、固有振動モード、一般質量および、無次元固有振動数である。また、右辺 \overline{Q} は一般動圧であり、 n_7, t_7

は翼表面における垂直、および接線単位ベクトルの鉛直方向成分である。記号 ∬dS は翼全面に

亘る表面積分を表す。 C_p ; 圧力係数、 C_f ; 摩擦抵抗係数である。

(1)式、(2)式を相互に情報交換しつつ、弾性体の変形に合わせた移動格子網上で積分すれば よいことになる。

モーダル解析では取り扱う現象の物理的考察が重要となる。対象とする現象において、いかなる モードが支配的かを十分考察し、近似に用いる固有振動モードを的確に選択することが重要であ る。さらに、(2)式の導出に際し、Free-Freeの振動解析による剛体モードを考慮すれば、空気 力と剛体の連成運動も同時に解析し得る。

4 無次元時間と無次元振動数

ここで、動的連成問題を扱う際の時間の取り扱いについて説明を加える。流体側の定式化では、 代表長さ、代表速度(一般には一様流U)が定義される。それらは、速度および距離(長さ)の 無次元化に用いられ、レイノルズ数の定義に現れるのは周知のとおりである。非定常問題では、 時間の無次元化が重要になり、一般には代表長さを代表速度を通過する時間をもってユニットと する。つまり、時間を $t = t/(D/U_{\infty})$ で無次元化する。 一方、構造側の時間に関する無次元 化も同様に定義しなければならない。これに基づき振動数(円振動数)を無次元化すると $k = 2p fD/U_{\infty}$

となる。 無次元振動数 k の物理的意味は、代表長さを一様流が通過する時間内の振動数(円振動数)ということになる。 因みに航空の空力弾性の分野では代表長さ Dとして、「翼根弦長の半分」とすることが 多い。これは、線形理論での定式化におけ る利便性に由来した慣例的なものであるが、 現代空力弾性学ではそのかぎりではない。 解析あるいは物理的解釈に都合の良い寸法 を選べば良い。レイノルズ数もこの代表長 さに基づく。

5 航空機の翼の動的安定解析例

図3に遷音速旅客機タイプの高アスペクト 比翼について、迎角 =2°遷音速域でフラ ッタシミュレーションによって調べられた

3 Comparisons of Flutter Boundary

安定限界を示す。縦軸は動圧、横軸はマッハ数である。図中印は、実験により確認されたフラ

ッタ境界。 印は翼応答が収束する点。 印は発散する点である。また、 印では構造側のモデ ルは線形であるにも拘わらず、空気力の強い非線形性により LCO(Limit Cycle Oscillation)を 持続する。この場合、振幅および振動数は動圧に依存する。 図4は M=0.75、P₀=85kPaの条件で、 大振幅 LCO を持続している様子を 1/8 フェーズ毎に示したものである。主翼曲げ2次のモードが 支配的であり、翼面上の衝撃波と境界層の干渉により剥離するフェーズがあることがわかる。こ の事実が LCO を持続する要因であり、CFDを用いてはじめてこれらの解析が可能になった。図 3に示すとおり、実験値および計算による安定限界が良好に一致する。

🛛 4 Flow Patterns during Flutter

図5には、航空宇宙技術研究所において設計、製作、飛行試験が計画されている小型超音速実験機(ロケット実験機)の全機形状をそのまわりの格子点図で示す。基礎設計段階から空力弾性に 関しては慎重に検討された。主翼曲げフラッタ、エルロンフラッタおよび打ち上げ時のロケット フィンについて線形解析および非線形フラッタシミュレーション、さらに、空力弾性的に相似な

模型を製作し風洞試験により安定性が調べられた。 図6にその検討の一例を示す。図は、航空宇宙技術 研究所の遷音速風洞での実機との空力弾性的に相 似な模型によるフラッタ試験の予備解析である。横 軸はマッハ数、縦軸は等価大気速度(EAS: Equivalent Air Speed)である。遷音速風洞の通風 域である総圧P。40~70kPa、マッハ数0.9において、 動圧15kPa、18kPa、20kPaの3点でのシミュレーシ ョン結果を示してある。実験は、ロール自由度を拘 束した場合と非拘束の場合を行ったので、それに対 応させて各ケースの応答を調べた。ロール自由度は 対称フラッタ、逆対称フラッタの出没に微妙な影響 を及ぼす。曲げ1次および2次の連成フラッタがお きることが確かめられた。シミュレーション結果で

☑ 5 SST Configuration and Computational Grid

は、ロール自由度を拘束した場合、20kPa で不安定であるが、非拘束の場合は同条件でも安定で

☑ 6 Wing Responses of SST

ある。また、参考までに、線形フラッタ解析による安定限界が同時に示してあるが、非線形解析 と比べ極端に危険側に計算されることがわかる。いわゆる遷音速ディップである。この事実が航 空機の空力弾性設計において非線形解析手法の確立が望まれる最大の理由である。関連研究は実 験結果の整理を含めさらに続行中である。

さらに、超音速機においては、薄翼が採用されるためエルロンなどの局所的な空力弾性不安定現

象が問題となることがしばしばある。先に示し た図1でのエルロンバズがそのひとつである。 エルロンに作用する空気力は線形理論では、経 験的に過大評価される場合が多いことが知ら れており、その評価は遷音速域のみならず他の 領域においても大きな課題である。通常の後退 翼では、無次元振動数が小さい場合は、主翼の 挙動はエルロン舵角の効果をうち消す方向に 働く。図7には、弾性翼のエルロンが強制加振 された場合の非定常空気力のシミュレーショ ンと実験値の比較が示されている。エルロンの 振動により誘起された空気力が、主翼を加振す るところで連成がある。

☑ 7 Unsteady Aerodynamics with Oscillating Aileron

6 おわりに 非線形フラッタ解析の最近の動向

以上、筆者らの最近の研究成果を中心にフラッタについての連成解析について紹介した。その必 要性が航空機に限られているが、今日の本分野の発展には目覚ましいものがある。概ね、高度な CFD手法により航空機の空力弾性問題は風洞試験と同等の結果が得られることがわかってきた。 また、フラッタ模型が高価であること、および風洞と模型の安全性を保証しつつ試験を実施する ことが困難であることなどから、CFDによるフラッタ解析の重要性はいうまでもない。次の段 階としてはフラッタ試験データとの比較による検証を進めると同時に複雑形状(エンジン搭載形 状など)に対応し得るソフトの開発である。この種のソフト開発は、最近では珍しいほど、ホッ トな分野となっている。国内だけに限ったとしても、G.Yang,大林等は独自で開発したプログラ ムを精力的に検証を進めている。また、H.Kheirandish、斉藤等が開発している汎用ソフト NATAS (<u>Numerical Aeroelastic Testing Assessment System</u>)は、非定常空気力としてナビエ・ストー クスモデルのみならずフルポテンシャル、非定常線形揚力面理論を組み込んだフラッタ解析汎用 プログラムとして期待できる。これらの解析の基本となる非定常空力算定手法の最近の研究とし ては、E.Lyの微少擾乱方程式コード、G.Yang,S.Obayashi等の複合格子を用いた複雑形状対応の ナビエ・ストークスコードの開発がある。前者は、この種のシミュレーションの経済性を大幅に 改善することが期待できる。まt、後者はフラッタに多大な影響を及ぼすエンジンなどのマスを 有する揚力面のフラッタ解析に有効であり、将来極めてリアルな非線形フラッタシミュレーショ ンが可能となる。これらの研究・開発に関しては、ここに紹介し、後に参考文献を付すに留める。

謝辞

本原稿の執筆にあたり、東北大学の G. Yang 氏には貴重な研究成果を個人的に提供いただいた。 また、航空宇宙技術研究所 JSPS フェローの E.Ly 氏には最近の研究情報を提供いただいた。 さらに、三菱重工業(株)研究部機体研究課および空力研究課には、航空宇宙技術研究所開 発の小型超音速実験機のフラッタ解析に多大な支援を頂いた。ここに、謝意を表します。

参考文献

[1] Bisplinghoff,R.L., Ashley, H. and Halfman, R.L., "Aeroelasticity" Addison-Wesley, London, 1955

[2] 中道 二郎 「振動翼まわりの非定常空気力の計算 第 , 部 」航空宇宙技術研究所 TR-1202, TR-1203 1993 年 5 月

[3] Kheirandish,H., Beppu, G. and Nakamichi, J., "Numerical Simulation of Viscous Unsteady Flow Around Wing Oscillating in Elastic Modes" EURO MECH-Colloquium349 on "Simulation of Fluid-Structure Interaction in Aeronautics" Goettingen Germany, September 1996

[4] Nakamichi.J.,Kheirandish,H and Beppu,G., "Computational Investigation of Wing Flutter", International Journal of Computational Fluid Dynamics, Vol.12 (1999), 279-290
[5] Yang,G. and Obayashi,S., "Transonic Aeroelastic Calculation with Full Implicit Subiteration and Deforming Grid Approach", Aerospace Numerical Simulation Technology Siposium 2001, held at NAL, Tokyo, June 2001

[6] Yang,G.,Kondo,M. and Obayashi,S., "Multiblock Navier-Stokes Solver for Wing/Fuselage Transport Aircraft", to appear

[7] Ly, E., Gear, J.A. and Hung H., "Time Linearized Caculations of Unsteady Transonic Flow", The Institute of Engineers of Australia and The Engineering Mathematics Group, Melbourne, Australia, (2001),191-194 他