Japanese |
Akinori
KAWAGUCHI
Graduate
School of Human and Environmental Studies, Kyoto University
Satoshi
SAKAI
School of Earth Sciences, HIS, Kyoto University
Abstract:
Effects of
temperature-dependence of viscosity on one-dimensional flows are analyzed.
When
hot fluid cooled as it flows, velocity-pressure characteristic curve represents
negative inclination in certain region. In this negative differential resistance
region, the pressure drop decreases with increased velocity. On two and three
parallel channels model, negative differential resistance causes bifurcation of
the solution. In this case, there are multiple steady flows with inhomogeneous
velocity distribution besides homogeneous one. Stableness of some inhomogeneous
flows and unstableness of homogeneous one are shown by numerical analyses. At
last, the way of the bifurcation is described in a fixed law.
Received 23 October 2001, accepted 9 November 2001 |