γ»Ò²èÁüή®¬ÄêË¡¤È±²±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÍѤ¤¤¿²óž¿åÁå¼Â¸³¤ÇȯÀ¸¤¹¤ë·¹°µÉÔ°ÂÄêÇȤÎÄêÎ̲½ << Prev | Index| Next >>

»²¹Íʸ¸¥

  1. Fluts, D., and R.Kaylor, 1959: The propagation of frequency in experimental baroclinic waves in a rotating annular ring. 359-371.
  2. Douglas,H.A. and P.J.Mason,1973: Thermal Convection in a Large Rotating Fluid Annulus: Some Effects of Varying the Aspect Ratio. J.Atmos. Sci.,30,1124-1134.
  3. Uryu, M., O. Morita, N. Noguchi and R. Sawada,1974: Heat transport in a rotating fluid annulus. J.Meteor.Soc.Japan,52,93-105.
  4. Niino, H., 1978: Turbulent Jet in a Rotating Fluid. J. Meteor. Soc. Japan, 56, 527-547.
  5. Ukaji,K.,1979:Thermal and Dynamical Structures of Convective Motions in a Rotating Fluid Annulus Subject to Internal Heating.J.Meteor.Soc.Japan,57,532-547.
  6. Niino, H. and N. Misawa, 1984: An Experimental and Theoretical Study of Barotropic Instability. J. Atmos. Sci., 41, 1992-2011.
  7. Niino, H., 1988: Inertial instability of the Stewartson E1/4-layer. Fluid Dyn. Res., 3, 407-414.
  8. Ukaji,K. and K.Tamaki,1989: A comparison of laboratory experiments and numerical simulations of steady baroclinic waves produced in a differentially heated rotating fluid annulus. J.Meteor.Soc.Japan,67,359-374.
  9. Tajima,T., T. Nakamura, and T. Kuroda,1995: Laboratory experiments of lagrangian motions in a steady baroclinic wave-internal structures of vortices. J.Meteor.Soc.Japan,73,37-45.
  10. Tajima,T., T. Nakamura, and K. Kurosawa,1999: Experimental observations of 3D lagrangian motions in steady baroclinic waves-­¶. J.Meteor.Soc.Japan,77,17-29
  11. Tamaki,K. and K.Ukaji,1995: An experimental study of baroclinic flows in an open cylinder. J.Meteor.Soc.Japan,73,1079-1085
  12. Tamaki,K. and K.Ukaji,2003: An experimental study of wave dispersion in a differentially heated rotating fluid annulus with a radially sloping bottom. J.Meteor.Soc.Japan,81,951-962.
  13. Yukimoto, S., H. Niino, T. Noguchi, R. Kimura, and F. Moulin, 2010: Structure of a bathtub vortex : Importance of the bottom boundary layer, Theoretical Comp. Fluid Dyn. , 24, 323-327.
  14. Iga, K., S. Yokota, S. Watanabe, T. Ikeda, H. Niino and N. Misawa, 2014: Various phenomena on a water vortex in a cylindrical tank over a rotating bottom, Fluid Dyn. Res. , 46, 031409.
  15. Matsuwo, M., M. Uryu, and R. Sawada,1976: An experimental study on the internal structure of baroclinic waves in a rotating annulus: Part­µ.thermal structure. J.Meteor.Soc.Japan,54,339-350.
  16. Matsuwo, M., M. Uryu, and R. Sawada,1977: An experimental study on the internal structure of baroclinic waves in a rotating annulus: Part­¶.dynamical structure. J.Meteor.Soc.Japan,55,248-259.
  17. Tamaki,K. and K.Ukaji,1985:Radial Heat Transport and Azimuthally Averaged Temperature Fields in a Differentially Heated Rotating Fluid Annulus Undergoing Amplitude Vacillation. J.Meteor.Soc.Japan,63,168-179.
  18. Tajima, T. and K. Kawahira, 1991:Three¡¡dimensional¡¡measurement¡¡of¡¡fluid¡¡velocity¡¡and¡¡temperature¡¡distribution¡¡in¡¡the rotating¡¡annulus¡¡experiment¡¡by¡¡means¡¡of liquid crystae¡¥Tenki, 38, 495-500 (in Japanese)
  19. Tajima T., T. Nakamura, T. Azuma, and K. Kurosawa, 1998:Fluorescent solution microcapsules as ideal tracer particles in long-term tracking of 3-D Lagrangian trajectories. Exp Fluids, 276-279.
  20. Hide, R., 1969:Some laboratory experoments on free thermal convection in a rotating fluid subject to a horizontal temperature gradient and their relation to the theory of the global atmospheric circulation, 196-221
  21. Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase 2010: Multiscale Interactions in the Lifecycle of a Tropical Cyclone simulated in a global cloud-system-resolving model: Part I: Large-scale and Storm-scale Evolutions, Mon. Wea. Rev., 138, 4285-4304.
  22. Tajima T., and T. Nakamura, 2005:Experiments to study interactions between baroclinic lower flows and a stably stratied upper layer, Exp. Fluids, 623-629
  23. Fowlis,W.W. and R.Hide,1965: Thermal Convection in a rotating annulus of liquid: Effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J.Atmos. Sci., 22, 541-558.
  24. µÆÃϾ¡¹°, ËÌÎÓ¶½Æó, ±»À¸Æ»Ìé, 1988:¼Â¸³µ¤¾Ý³ØÆþÌ硽¼Â¸³¼¼¤Ë¤ß¤ëµ¤¾Ý¤Î¼ï¡¹Áê (µ¤¾Ý³Ø¤Î¥×¥í¥à¥Ê¡¼¥É) ¡¤ÅìµþƲ½ÐÈÇ, 254.
  25. Á¤ÅĤ¢¤æ¤ß, 2012: Æó½Å²óž±ßÅû¿åÁå¤Ë¤ª¤±¤ëÇÈÆ°¸½¾Ý¤Î¸¦µæ¡¡ÇÈÆ°¤Î²Ä»ë²½¤ÈÄÉÀ×γ»Ò¤òÍѤ¤¤¿²òÀÏ¡¤²£É͹ñΩÂç³Ø´¶ÈÏÀʸ, 258.

γ»Ò²èÁüή®¬ÄêË¡¤È±²±¿Æ°¥¨¥Í¥ë¥®¡¼¤òÍѤ¤¤¿²óž¿åÁå¼Â¸³¤ÇȯÀ¸¤¹¤ë·¹°µÉÔ°ÂÄêÇȤÎÄêÎ̲½ << Prev | Index| Next >>