式(4),(8)の各変数を基本場()と摂動()に分け、両式を線形化すると次の摂動方程式が得られる。
|
(10) |
|
(11) |
ただし、基本場は定常かつ方向に一様なので、基本場成分の時間微分・微分は0となる。
次に、摂動が方向に周期的であると仮定すると以下のように書ける。
ただし、,,,,,,,は全て複素数とする。は方向の波数、である。
以下の関係式を用いると、,から,,,が求まるので、,,の3つを独立な変数とする。
以上より、式(10)の,成分と式(11)を計算すると次のようになる。
式(15)〜(17)に対して固有値解析を行う。計算方法の詳細はAppendixで述べる。
SAITO Naoaki
2008-03-07